氢键
堆积
催化作用
离子键合
离子液体
化学
配对
化学物理
计算化学
光化学
分子
离子
有机化学
物理
超导电性
量子力学
作者
Kun Dong,Suojiang Zhang,Jianji Wang
摘要
Ionic liquids (ILs) have many potential applications in the chemical industry. In order to understand ILs, their molecular details have been extensively investigated. Intuitively, electrostatic forces are solely important in ILs. However, experiments and calculations have provided strong evidence for the existence of H-bonds in ILs and their roles in the properties and applications of ILs. As a structure-directing force, H-bonds are responsible for ionic pairing, stacking and self-assembling. Their geometric structure, interaction energy and electronic configuration in the ion-pairs of imidazolium-based ILs and protic ionic liquids (PILs) show a great number of differences compared to conventional H-bonds. In particular, their cooperation with electrostatic, dispersion and π interactions embodies the physical nature of H-bonds in ILs, which anomalously influences their properties, leading to a decrease in their melting points and viscosities and thus fluidizing them. Using ILs as catalysts and solvents, many reactions can be activated by the presence of H-bonds, which reduce the reaction barriers and stabilize the transition states. In the dissolution of lignocellulosic biomass by ILs, H-bonds exhibit a most important role in disrupting the H-bonding network of cellulose and controlling microscopic ordering into domains. In this article, a critical review is presented regarding the structural features of H-bonds in ILs and PILs, the correlation between H-bonds and the properties of ILs, and the roles of H-bonds in typical reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI