数学
固定溶液
半导体
指数稳定性
理论(学习稳定性)
数学分析
边值问题
平稳分布
封面(代数)
静止状态
能量(信号处理)
固定相
边界(拓扑)
水动力稳定性
机械
物理
量子力学
化学
计算机科学
机械工程
湍流
统计
色谱法
非线性系统
机器学习
雷诺数
马尔可夫链
工程类
作者
Shinya Nishibata,Masahiro Suzuki
出处
期刊:Osaka Journal of Mathematics
日期:2007-09-01
卷期号:44 (3): 639-665
被引量:5
摘要
We study the existence and the asymptotic stability of a stationary solution to the initial boundary value problem for a one-dimensional hydrodynamic model of semiconductors. This problem is considered, in the previous researches [2] and [11], under the assumption that a doping profile is flat, which makes the stationary solution also flat. However, this assumption is too narrow to cover the doping profile in actual diode devices. Thus, the main purpose of the present paper is to prove the asymptotic stability of the stationary solution without this assumption on the doping profile. Firstly, we prove the existence of the stationary solution. Secondly, the stability is shown by an elementary energy method, where the equation for an energy form plays an essential role.
科研通智能强力驱动
Strongly Powered by AbleSci AI