功能(生物学)
能量(信号处理)
航程(航空)
计算机科学
能源景观
工程类
物理
航空航天工程
量子力学
进化生物学
生物
热力学
作者
Andrew Leaver‐Fay,Matthew J. O’Meara,Mike Tyka,Ron Jacak,Yifan Song,Elizabeth H. Kellogg,James Thompson,Ian Davis,Roland A. Pache,Sergey Lyskov,Jeffrey J. Gray,Tanja Kortemme,Jane S. Richardson,James J. Havranek,Jack Snoeyink,David Baker,Brian Kuhlman
出处
期刊:Methods in Enzymology
日期:2013-01-01
卷期号:: 109-143
被引量:189
标识
DOI:10.1016/b978-0-12-394292-0.00006-0
摘要
Accurate energy functions are critical to macromolecular modeling and design. We describe new tools for identifying inaccuracies in energy functions and guiding their improvement, and illustrate the application of these tools to the improvement of the Rosetta energy function. The feature analysis tool identifies discrepancies between structures deposited in the PDB and low-energy structures generated by Rosetta; these likely arise from inaccuracies in the energy function. The optE tool optimizes the weights on the different components of the energy function by maximizing the recapitulation of a wide range of experimental observations. We use the tools to examine three proposed modifications to the Rosetta energy function: improving the unfolded state energy model (reference energies), using bicubic spline interpolation to generate knowledge-based torisonal potentials, and incorporating the recently developed Dunbrack 2010 rotamer library (Shapovalov & Dunbrack, 2011).
科研通智能强力驱动
Strongly Powered by AbleSci AI