清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A neural network aid for the early diagnosis of cardiac ischemia in patients presenting to the emergency department with chest pain

医学 胸痛 急诊科 心肌梗塞 缺血 急诊医学 心脏病学 精神科
作者
William G. Baxt,Frances S. Shofer,Frank D. Sites,Judd E. Hollander
出处
期刊:Annals of Emergency Medicine [Elsevier]
卷期号:40 (6): 575-583 被引量:101
标识
DOI:10.1067/mem.2002.129171
摘要

Chest pain is the second most common chief complaint presented to the emergency department. Although the causes of chest pain span the clinical spectrum from the trivial to the life threatening, it is often difficult to identify which patients have the most common life-threatening cause, cardiac ischemia. Because of the potential for poor outcome if this diagnosis is missed, physicians have had a low threshold for admitting patients with chest pain to the hospital, the vast majority of whom are found not to have cardiac ischemia. In an earlier study with a large chest pain patient registry, an artificial neural network was shown to be able to identify the subset of patients who present to the ED with chest pain who have sustained acute myocardial infarction. The objective of this study was to use the same registry to determine whether a network could be trained accurately to identify the larger subset of patients who have cardiac ischemia.Two thousand two hundred four adult patients presenting to the ED with chest pain who received an ECG were used to train and test an artificial neural network to recognize the presence of cardiac ischemia. Only the data available at the time of initial patient contact were used to replicate the conditions of real-time evaluation. Forty variables from patient history, physical examination, ECG, and the first set of chemical cardiac marker determinations were used to train and subsequently test the network. The network was trained and tested by using the jackknife variance technique to allow for the network to be trained on as many of the features of the small subset of ischemic patients as possible. Network accuracy was compared with 2 existing aids to the diagnosis of cardiac ischemia, as well as a derived regression model.The network had a sensitivity of 88.1% (95% confidence interval [CI] 84.8% to 91.4%) and a specificity of 86.2% (95% CI 84.6% to 87.7%) for cardiac ischemia despite the fact that a mean of 5% of all required network input data and 41% of cardiac chemical marker data were missing. The network also performed more accurately than the 3 other tested approaches.These data suggest that an artificial neural network might be able to identify which patients who present to the ED with chest pain have cardiac ischemia with useful sensitivities and specificities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
13秒前
arsenal发布了新的文献求助10
13秒前
Tong完成签到,获得积分0
14秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
23秒前
wodetaiyangLLL完成签到 ,获得积分10
26秒前
35秒前
friend516完成签到 ,获得积分10
58秒前
1分钟前
淡定自中发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
CadoreK完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
linqitc发布了新的文献求助10
2分钟前
rockyshi完成签到 ,获得积分10
2分钟前
ffff完成签到 ,获得积分10
2分钟前
碗碗豆喵完成签到 ,获得积分10
3分钟前
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
3分钟前
lph完成签到 ,获得积分10
3分钟前
DJ_Tokyo完成签到,获得积分0
3分钟前
yaya完成签到 ,获得积分10
3分钟前
4分钟前
zhangsan完成签到,获得积分10
4分钟前
靓丽奇迹完成签到 ,获得积分10
4分钟前
4分钟前
和风完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助舒适的大有采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
CodeCraft应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534541
求助须知:如何正确求助?哪些是违规求助? 4622572
关于积分的说明 14582648
捐赠科研通 4562692
什么是DOI,文献DOI怎么找? 2500318
邀请新用户注册赠送积分活动 1479848
关于科研通互助平台的介绍 1451059