A neural network aid for the early diagnosis of cardiac ischemia in patients presenting to the emergency department with chest pain

医学 胸痛 急诊科 心肌梗塞 缺血 急诊医学 心脏病学 精神科
作者
William G. Baxt,Frances S. Shofer,Frank D. Sites,Judd E. Hollander
出处
期刊:Annals of Emergency Medicine [Elsevier]
卷期号:40 (6): 575-583 被引量:101
标识
DOI:10.1067/mem.2002.129171
摘要

Chest pain is the second most common chief complaint presented to the emergency department. Although the causes of chest pain span the clinical spectrum from the trivial to the life threatening, it is often difficult to identify which patients have the most common life-threatening cause, cardiac ischemia. Because of the potential for poor outcome if this diagnosis is missed, physicians have had a low threshold for admitting patients with chest pain to the hospital, the vast majority of whom are found not to have cardiac ischemia. In an earlier study with a large chest pain patient registry, an artificial neural network was shown to be able to identify the subset of patients who present to the ED with chest pain who have sustained acute myocardial infarction. The objective of this study was to use the same registry to determine whether a network could be trained accurately to identify the larger subset of patients who have cardiac ischemia.Two thousand two hundred four adult patients presenting to the ED with chest pain who received an ECG were used to train and test an artificial neural network to recognize the presence of cardiac ischemia. Only the data available at the time of initial patient contact were used to replicate the conditions of real-time evaluation. Forty variables from patient history, physical examination, ECG, and the first set of chemical cardiac marker determinations were used to train and subsequently test the network. The network was trained and tested by using the jackknife variance technique to allow for the network to be trained on as many of the features of the small subset of ischemic patients as possible. Network accuracy was compared with 2 existing aids to the diagnosis of cardiac ischemia, as well as a derived regression model.The network had a sensitivity of 88.1% (95% confidence interval [CI] 84.8% to 91.4%) and a specificity of 86.2% (95% CI 84.6% to 87.7%) for cardiac ischemia despite the fact that a mean of 5% of all required network input data and 41% of cardiac chemical marker data were missing. The network also performed more accurately than the 3 other tested approaches.These data suggest that an artificial neural network might be able to identify which patients who present to the ED with chest pain have cardiac ischemia with useful sensitivities and specificities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chao完成签到,获得积分20
刚刚
1秒前
苗条的紫文完成签到,获得积分10
1秒前
在水一方应助浚稚采纳,获得10
1秒前
1秒前
2秒前
2秒前
别先生发布了新的文献求助10
2秒前
花花发布了新的文献求助10
2秒前
抹不掉的记忆完成签到,获得积分10
3秒前
bkagyin应助西瓜真的好圆采纳,获得30
3秒前
香蕉觅云应助英俊的水彤采纳,获得10
4秒前
星辰大海应助活力广缘采纳,获得10
5秒前
闪闪雪糕发布了新的文献求助10
5秒前
tianugui发布了新的文献求助10
6秒前
6秒前
栗子糕完成签到,获得积分10
6秒前
lalala应助木易年华采纳,获得10
7秒前
7秒前
脑洞疼应助白桃汽水采纳,获得10
7秒前
8秒前
8秒前
宓之云完成签到,获得积分10
8秒前
寻万里完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
baoyin_hexige应助12345采纳,获得50
10秒前
贪玩的成危完成签到 ,获得积分10
10秒前
宓之云发布了新的文献求助10
11秒前
LXR发布了新的文献求助10
11秒前
12秒前
五月莲花发布了新的文献求助10
12秒前
愉快的真发布了新的文献求助50
12秒前
坚强的依秋完成签到,获得积分10
13秒前
13秒前
lxbbb完成签到,获得积分10
13秒前
liuyan0316发布了新的文献求助10
13秒前
李子阳发布了新的文献求助10
14秒前
无聊先知发布了新的文献求助10
15秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263260
求助须知:如何正确求助?哪些是违规求助? 2903827
关于积分的说明 8327336
捐赠科研通 2573807
什么是DOI,文献DOI怎么找? 1398563
科研通“疑难数据库(出版商)”最低求助积分说明 654245
邀请新用户注册赠送积分活动 632786