生物扩散
种子散布
风速
湍流
风洞
生物
非生物成分
大气科学
生态学
物理
气象学
机械
人口
人口学
社会学
作者
Courtney J. Murren,Aaron M. Ellison
摘要
We used mathematical models for wind-dispersed seeds and wind-tunnel experiments to predict modal seed dispersal distance of the Neotropical orchid Brassavola nodosa under conditions approximating those found in its natural habitat: mangrove islands in Belize, Central America. Key variables in a simple ballistic model for predicting modal dispersal distance (xm) of an individual seed include: height of release (h); free-stream velocity (Uc); and terminal velocity of the seed (Ut): xm = h Uc/Ut. Modal dispersal distance of dust-like orchid seeds were predicted adequately by this ballistic model at low wind velocities and low release heights, but it underestimated the increasing importance of turbulence at higher wind velocities and greater release heights. We estimated the magnitude and relative importance of one measure of turbulence, vertical mixing velocity (W*), on xm in wind tunnel experiments. Our estimates of W* were within the same order of magnitude as those found for other small dust-like seeds and pollen. In high turbulence conditions, incorporation of vertical mixing velocity effects into the ballistic model of seed dispersal overestimated modal seed dispersal distances.
科研通智能强力驱动
Strongly Powered by AbleSci AI