坐标下降
正多边形
应用数学
正规化(语言学)
加速
计算机科学
弹性网正则化
比例危险模型
路径(计算)
下降(航空)
数学
算法
数学优化
统计
回归
人工智能
物理
几何学
操作系统
气象学
程序设计语言
作者
Noah Simon,Jerome H. Friedman,Trevor Hastie,Rob Tibshirani
标识
DOI:10.18637/jss.v039.i05
摘要
We introduce a pathwise algorithm for the Cox proportional hazards model, regularized by convex combinations of ℓ1 and ℓ2 penalties (elastic net). Our algorithm fits via cyclical coordinate descent, and employs warm starts to find a solution along a regularization path. We demonstrate the efficacy of our algorithm on real and simulated data sets, and find considerable speedup between our algorithm and competing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI