马氏距离
计算机科学
降维
人工智能
模式识别(心理学)
参数统计
嵌入
可视化
公制(单位)
度量(数据仓库)
维数之咒
数据集
数据挖掘
数学
统计
经济
运营管理
作者
Jacob Goldberger,Geoffrey E. Hinton,Sam T. Roweis,Ruslan Salakhutdinov
出处
期刊:Neural Information Processing Systems
日期:2004-12-01
卷期号:17: 513-520
被引量:1738
摘要
In this paper we propose a novel method for learning a Mahalanobis distance measure to be used in the KNN classification algorithm. The algorithm directly maximizes a stochastic variant of the leave-one-out KNN score on the training set. It can also learn a low-dimensional linear embedding of labeled data that can be used for data visualization and fast classification. Unlike other methods, our classification model is non-parametric, making no assumptions about the shape of the class distributions or the boundaries between them. The performance of the method is demonstrated on several data sets, both for metric learning and linear dimensionality reduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI