累加器(密码学)
液压泵
水力机械
液压马达
能量回收
液压蓄能器
变量泵
环境科学
水力学
汽车工程
控制理论(社会学)
工程类
能量(信号处理)
机械工程
计算机科学
物理
人工智能
航空航天工程
算法
量子力学
控制(管理)
作者
Satyam Panchal,İbrahim Dinçer,Martin Agelin‐Chaab
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme
[ASME International]
日期:2015-09-23
卷期号:138 (1)
被引量:18
摘要
In this study, a thermodynamic analysis of a hydraulic braking energy recovery system used in vehicles is performed for newly developed systems. The present system is related to the field of energy efficiency in vehicles. The energy recovery system comprises a first pump, a hydraulic accumulator, and a hydraulic motor. The first pump is a variable displacement hydraulic pump (VDP). The hydraulic accumulator is connected to the first pump which operates to store hydraulic fluid under pressure. The hydraulic motor is hydraulically connected to the accumulator to receive hydraulic fluid. The motor is adapted to drive a second hydraulic pump, which is hydraulically connected to the auxiliary system, using hydraulic energy stored in the accumulator. The overall charging and discharging efficiencies, and the overall system efficiency is calculated and presented in this paper. For the purpose of the analysis, EES (engineering equation solver) is used. In addition, parametric studies are performed to observe the effects of different substantial parameters, namely, the inlet pressure and temperature of the accumulator, and the reference environment temperature, in order to investigate the variations in the system performance in terms of the efficiencies. Two systems are developed and it is found that the charging and discharging efficiencies for one system are 83.81% and 87.73%, while for the other system the charging and discharging efficiencies are 81.84% and 85.67%, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI