ICIF-Net: Intra-Scale Cross-Interaction and Inter-Scale Feature Fusion Network for Bitemporal Remote Sensing Images Change Detection

计算机科学 增采样 判别式 人工智能 模式识别(心理学) 卷积神经网络 特征(语言学) 变压器 比例(比率) 图像(数学) 语言学 量子力学 物理 哲学 电压
作者
Yuchao Feng,Honghui Xu,Jiawei Jiang,Hao Liu,Jianwei Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:160
标识
DOI:10.1109/tgrs.2022.3168331
摘要

Change detection (CD) of remote sensing (RS) images has enjoyed remarkable success by virtue of convolutional neural networks (CNNs) with promising discriminative capabilities. However, CNNs lack the capability of modeling long-range dependencies in bitemporal image pairs, resulting in inferior identifiability against the same semantic targets yet with varying features. The recently thriving Transformer, on the contrary, is warranted, for practice, with global receptive fields. To jointly harvest the local-global features and circumvent the misalignment issues caused by step-by-step downsampling operations in traditional backbone networks, we propose an intra-scale cross-interaction and inter-scale feature fusion network (ICIF-Net), explicitly tapping the potential of integrating CNN and Transformer. In particular, the local features and global features, respectively, extracted by CNN and Transformer, are interactively communicated at the same spatial resolution using a linearized Conv Attention module, which motivates the counterpart to glimpse the representation of another branch while preserving its own features. In addition, with the introduction of two attention-based inter-scale fusion schemes, including mask-based aggregation and spatial alignment (SA), information integration is enforced at different resolutions. Finally, the integrated features are fed into a conventional change prediction head to generate the output. Extensive experiments conducted on four CD datasets of bitemporal (RS) images demonstrate that our ICIF-Net surpasses the other state-of-the-art (SOTA) approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真之桃完成签到,获得积分10
1秒前
2秒前
2秒前
所所应助阿巴阿巴小聂采纳,获得10
2秒前
沧笙踏歌应助小奥采纳,获得10
2秒前
xiaxia完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
7秒前
cckyt完成签到,获得积分10
9秒前
9秒前
10秒前
CipherSage应助想人陪的山水采纳,获得10
10秒前
zzy完成签到 ,获得积分10
10秒前
11秒前
12秒前
13秒前
14秒前
旺仔牛奶糖完成签到,获得积分10
15秒前
大Doctor陈发布了新的文献求助10
15秒前
开开开发布了新的文献求助20
15秒前
16秒前
16秒前
Newt应助wshwx采纳,获得10
17秒前
17秒前
魏来发布了新的文献求助30
17秒前
17秒前
可爱青曼完成签到,获得积分10
17秒前
17秒前
LaTeXer应助shann采纳,获得100
18秒前
18秒前
20秒前
20秒前
迷l发布了新的文献求助10
21秒前
三岁发布了新的文献求助10
21秒前
开心苠发布了新的文献求助10
22秒前
25秒前
重要衬衫发布了新的文献求助10
26秒前
slow发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959309
求助须知:如何正确求助?哪些是违规求助? 3505589
关于积分的说明 11124738
捐赠科研通 3237345
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871544
科研通“疑难数据库(出版商)”最低求助积分说明 802844