A Time Series Transformer based method for the rotating machinery fault diagnosis

超参数 计算机科学 嵌入 降维 特征向量 卷积神经网络 模式识别(心理学) 循环神经网络 变压器 人工智能 维数之咒 特征提取 人工神经网络 算法 电压 物理 量子力学
作者
Yuhong Jin,Lei Hou,Yushu Chen
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:494: 379-395 被引量:151
标识
DOI:10.1016/j.neucom.2022.04.111
摘要

Fault diagnosis of rotating machinery is a significant engineering problem. In recent years, fault diagnosis methods have matured based on the Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). However, these traditional models have the problem of Long-Term Dependencies, leading to their feature extraction ability defect. To address these issues, we proposed a new method based on the Time Series Transformer (TST) to recognize the fault modes of the various rotating machinery. In this paper, firstly, we design a new tokens sequences generation method that can handle data in 1D format, namely time series tokenizer. Then the TST combining time series tokenizer and Transformer is presented. The test results on the given datasets show that the proposed method has better fault identification capability than traditional CNN and RNN models. Secondly, the effect of structural hyperparameters on fault diagnosis performance, computational complexity, and parameters number of the TST is analyzed in detail through experiments. The influence laws of some hyperparameters are obtained as well. Finally, the feature vectors in the embedding space are visualized via the t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction method. On this basis, the working pattern of TST is explained to a certain extent. Moreover, we find that the feature vectors extracted by the proposed method show the best intra-class compactness and inter-class separability compared with CNN and RNN models by analyzing their distribution form, which further demonstrates the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒元瑶完成签到 ,获得积分10
刚刚
SciGPT应助赵芳采纳,获得10
刚刚
刚刚
1秒前
12345完成签到,获得积分10
1秒前
1秒前
Sheryl发布了新的文献求助10
2秒前
1111应助mdbbs2021采纳,获得10
2秒前
2秒前
haha完成签到,获得积分10
2秒前
2秒前
3秒前
小马甲应助赫赫采纳,获得10
3秒前
3秒前
桐桐应助semigreen采纳,获得10
3秒前
3秒前
郭娅楠发布了新的文献求助10
4秒前
阿龙完成签到,获得积分10
4秒前
陈文文发布了新的文献求助10
4秒前
情怀应助顺利的语山采纳,获得10
5秒前
5秒前
张张发布了新的文献求助10
5秒前
七七八八发布了新的文献求助10
5秒前
姚夏发布了新的文献求助10
5秒前
兴奋的以蓝完成签到,获得积分10
6秒前
Silhouette完成签到,获得积分10
6秒前
烟花应助lizy采纳,获得10
6秒前
6秒前
李健的粉丝团团长应助haha采纳,获得10
7秒前
nnl发布了新的文献求助10
7秒前
小杜完成签到,获得积分10
7秒前
8秒前
jomunmi完成签到 ,获得积分10
8秒前
8秒前
yyfdqms完成签到,获得积分10
8秒前
8秒前
明期完成签到,获得积分20
8秒前
9秒前
9秒前
璀璨关注了科研通微信公众号
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577106
求助须知:如何正确求助?哪些是违规求助? 3996300
关于积分的说明 12372082
捐赠科研通 3670338
什么是DOI,文献DOI怎么找? 2022766
邀请新用户注册赠送积分活动 1056873
科研通“疑难数据库(出版商)”最低求助积分说明 944022