A Time Series Transformer based method for the rotating machinery fault diagnosis

超参数 计算机科学 嵌入 降维 特征向量 卷积神经网络 模式识别(心理学) 循环神经网络 变压器 人工智能 维数之咒 特征提取 人工神经网络 算法 电压 物理 量子力学
作者
Yuhong Jin,Lei Hou,Yushu Chen
出处
期刊:Neurocomputing [Elsevier]
卷期号:494: 379-395 被引量:151
标识
DOI:10.1016/j.neucom.2022.04.111
摘要

Fault diagnosis of rotating machinery is a significant engineering problem. In recent years, fault diagnosis methods have matured based on the Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). However, these traditional models have the problem of Long-Term Dependencies, leading to their feature extraction ability defect. To address these issues, we proposed a new method based on the Time Series Transformer (TST) to recognize the fault modes of the various rotating machinery. In this paper, firstly, we design a new tokens sequences generation method that can handle data in 1D format, namely time series tokenizer. Then the TST combining time series tokenizer and Transformer is presented. The test results on the given datasets show that the proposed method has better fault identification capability than traditional CNN and RNN models. Secondly, the effect of structural hyperparameters on fault diagnosis performance, computational complexity, and parameters number of the TST is analyzed in detail through experiments. The influence laws of some hyperparameters are obtained as well. Finally, the feature vectors in the embedding space are visualized via the t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction method. On this basis, the working pattern of TST is explained to a certain extent. Moreover, we find that the feature vectors extracted by the proposed method show the best intra-class compactness and inter-class separability compared with CNN and RNN models by analyzing their distribution form, which further demonstrates the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yk完成签到 ,获得积分10
5秒前
焰古完成签到 ,获得积分10
5秒前
6秒前
popo6150完成签到 ,获得积分10
8秒前
我是老大应助张龙雨采纳,获得10
8秒前
ybwei2008_163发布了新的文献求助10
9秒前
坏坏的快乐完成签到,获得积分10
9秒前
小晴天完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
14秒前
qinjiayin完成签到,获得积分10
14秒前
17秒前
wellbeing完成签到,获得积分10
18秒前
杨杨杨完成签到 ,获得积分10
19秒前
20秒前
可爱邓邓完成签到 ,获得积分10
21秒前
ybwei2008_163发布了新的文献求助10
22秒前
tsuki完成签到 ,获得积分10
26秒前
xun发布了新的文献求助10
28秒前
朴素的愫完成签到 ,获得积分10
29秒前
29秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
Frank应助科研通管家采纳,获得10
35秒前
35秒前
Frank应助科研通管家采纳,获得10
36秒前
Frank应助科研通管家采纳,获得10
36秒前
36秒前
闪闪的斑马完成签到,获得积分10
36秒前
Frank应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
Frank应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
Frank应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
Frank应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
汉堡包应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796286
求助须知:如何正确求助?哪些是违规求助? 5775163
关于积分的说明 15491606
捐赠科研通 4923302
什么是DOI,文献DOI怎么找? 2650299
邀请新用户注册赠送积分活动 1597526
关于科研通互助平台的介绍 1552158