A Time Series Transformer based method for the rotating machinery fault diagnosis

超参数 计算机科学 嵌入 降维 特征向量 卷积神经网络 模式识别(心理学) 循环神经网络 变压器 人工智能 维数之咒 特征提取 人工神经网络 算法 电压 物理 量子力学
作者
Yuhong Jin,Lei Hou,Yushu Chen
出处
期刊:Neurocomputing [Elsevier]
卷期号:494: 379-395 被引量:151
标识
DOI:10.1016/j.neucom.2022.04.111
摘要

Fault diagnosis of rotating machinery is a significant engineering problem. In recent years, fault diagnosis methods have matured based on the Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). However, these traditional models have the problem of Long-Term Dependencies, leading to their feature extraction ability defect. To address these issues, we proposed a new method based on the Time Series Transformer (TST) to recognize the fault modes of the various rotating machinery. In this paper, firstly, we design a new tokens sequences generation method that can handle data in 1D format, namely time series tokenizer. Then the TST combining time series tokenizer and Transformer is presented. The test results on the given datasets show that the proposed method has better fault identification capability than traditional CNN and RNN models. Secondly, the effect of structural hyperparameters on fault diagnosis performance, computational complexity, and parameters number of the TST is analyzed in detail through experiments. The influence laws of some hyperparameters are obtained as well. Finally, the feature vectors in the embedding space are visualized via the t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction method. On this basis, the working pattern of TST is explained to a certain extent. Moreover, we find that the feature vectors extracted by the proposed method show the best intra-class compactness and inter-class separability compared with CNN and RNN models by analyzing their distribution form, which further demonstrates the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倩倩完成签到 ,获得积分10
1秒前
1秒前
兀那狗子别跑完成签到,获得积分10
1秒前
赵君仪完成签到,获得积分10
1秒前
dagongren发布了新的文献求助10
2秒前
明朗完成签到 ,获得积分0
3秒前
3秒前
3秒前
4秒前
aajjxx完成签到,获得积分10
4秒前
无花果应助江海客采纳,获得30
4秒前
4秒前
jww完成签到,获得积分10
4秒前
hirono完成签到 ,获得积分10
4秒前
htx完成签到,获得积分10
4秒前
小土豆的麻薯完成签到,获得积分10
5秒前
赘婿应助小汪快跑采纳,获得10
5秒前
话语完成签到,获得积分10
5秒前
善学以致用应助kkk采纳,获得10
5秒前
chenyichi完成签到,获得积分20
5秒前
5秒前
木子完成签到 ,获得积分10
6秒前
6秒前
6秒前
陈情完成签到 ,获得积分10
6秒前
mtl完成签到,获得积分10
7秒前
7秒前
8秒前
俏皮诺言完成签到,获得积分10
8秒前
8秒前
8秒前
雷乾发布了新的文献求助10
8秒前
Kuhaku完成签到,获得积分10
8秒前
泡芙完成签到 ,获得积分10
9秒前
黄黄完成签到,获得积分10
9秒前
9秒前
yeyuchenfeng发布了新的文献求助10
9秒前
淡淡冬卉关注了科研通微信公众号
9秒前
xy。完成签到,获得积分10
9秒前
懒羊羊关注了科研通微信公众号
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415