同宿轨道
异宿循环
混乱的
异宿分岔
异斜眶
数学
不变(物理)
仿射变换
班级(哲学)
分段
数学分析
纯数学
计算机科学
非线性系统
分叉
物理
数学物理
量子力学
人工智能
倍周期分岔
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2022-01-01
卷期号:27 (12): 7315-7315
被引量:4
标识
DOI:10.3934/dcdsb.2022045
摘要
<p style='text-indent:20px;'>Detecting an isolated homoclinic or heteroclinic cycle is a great challenge in a concrete system, letting alone the case of coexisting scenarios and more complicated chaotic behaviors. This paper systematically investigates the dynamics for a class of three-dimensional (3D) three-zone piecewise affine systems (PWASs) consisting of three sub-systems. Interestingly, under different conditions the considered system can display three types of coexisting singular cycles including: homoclinic and homoclinic cycles, heteroclinic and heteroclinic cycles, homoclinic and heteroclinic cycles. Furthermore, it establishes sufficient conditions for the presence of chaotic invariant sets emerged from such coexisting cycles. Finally, three numerical examples are provided to verify the proposed theoretical results.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI