数学
可控性
空(SQL)
组合数学
应用数学
计算机科学
数据库
作者
Abdelaziz Khoutaibi,Lahcen Maniar,Omar Oukdach
出处
期刊:Discrete and Continuous Dynamical Systems - Series S
[American Institute of Mathematical Sciences]
日期:2022-01-01
卷期号:15 (6): 1525-1525
被引量:5
标识
DOI:10.3934/dcdss.2022087
摘要
<p style='text-indent:20px;'>This paper deals with the null controllability of the semilinear heat equation with dynamic boundary conditions of surface diffusion type, with nonlinearities involving drift terms. First, we prove a negative result for some function <inline-formula><tex-math id="M1">\begin{document}$ F $\end{document}</tex-math></inline-formula> that behaves at infinity like <inline-formula><tex-math id="M2">\begin{document}$ |s| \ln ^{p}(1+|s|), $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M3">\begin{document}$ p > 2 $\end{document}</tex-math></inline-formula>. Then, by a careful analysis of the linearized system and a fixed point method, a null controllability result is proved for nonlinearties <inline-formula><tex-math id="M4">\begin{document}$ F(s, \xi) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ G(s, \xi) $\end{document}</tex-math></inline-formula> growing slower than <inline-formula><tex-math id="M6">\begin{document}$ |s| \ln ^{3 / 2}(1+|s|+\|\xi\|)+\|\xi\| \ln^{1 / 2}(1+|s|+\|\xi\|) $\end{document}</tex-math></inline-formula> at infinity.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI