计算机科学
点云
保险丝(电气)
可扩展性
姿势
人工智能
雷达
云计算
代表(政治)
点(几何)
计算机视觉
帧(网络)
机器学习
实时计算
电信
几何学
数学
数据库
政治
法学
政治学
电气工程
工程类
操作系统
作者
Sizhe An,Ümit Y. Ogras
标识
DOI:10.1145/3489517.3530522
摘要
Millimeter-Wave (mmWave) radar can enable high-resolution human pose estimation with low cost and computational requirements. However, mmWave data point cloud, the primary input to processing algorithms, is highly sparse and carries significantly less information than other alternatives such as video frames. Furthermore, the scarce labeled mmWave data impedes the development of machine learning (ML) models that can generalize to unseen scenarios. We propose a fast and scalable human pose estimation (FUSE) framework that combines multi-frame representation and meta-learning to address these challenges. Experimental evaluations show that FUSE adapts to the unseen scenarios 4$\times$ faster than current supervised learning approaches and estimates human joint coordinates with about 7 cm mean absolute error.
科研通智能强力驱动
Strongly Powered by AbleSci AI