Novel method for rapid identification of Listeria monocytogenes based on metabolomics and deep learning

代谢组学 单核细胞增生李斯特菌 鉴定(生物学) 计算生物学 人工智能 卷积神经网络 计算机科学 生物 生物信息学 细菌 遗传学 生态学
作者
Ying Feng,Zhangkai J. Cheng,Xianhu Wei,Moutong Chen,Jumei Zhang,Youxiong Zhang,Liang Xue,Minling Chen,Fan Li,Yuting Shang,Tingting Liang,Yu Ding,Qingping Wu
出处
期刊:Food Control [Elsevier]
卷期号:139: 109042-109042 被引量:9
标识
DOI:10.1016/j.foodcont.2022.109042
摘要

Metabolomics based on the mass spectrometry approach can serve as a platform to detect pathogens and spoilage microorganisms. However, the accurate quantification of biomarkers with lower molecular weight based on mass spectrometry is generally limited by isotope-labeled standards and complicated protocols, which is not conducive to large-scale applications. Here, we developed a novel method that combined metabolomics with deep learning for the identification of Listeria monocytogenes. A convolutional neural network (CNN) model of these three potential biomarkers for L. monocytogenes was established, with a prediction accuracy of 82.2%. Furthermore, metabolic fingerprints composed of 29 metabolites were obtained using pseudotargeted metabolomics approach, which successfully distinguished six common Listeria species in hierarchical cluster analysis. The binary and multiple classifiers of CNN models were established to identify L. monocytogenes and common pathogens, which prediction accuracies were 96.7% and 96.3%, respectively. This novel method combined pseudotargeted metabolomics with deep learning is a promising powerful tool for pathogen identification and classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
by完成签到 ,获得积分20
刚刚
研友_EZ1KkL完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
0009987完成签到,获得积分10
2秒前
2秒前
ding应助月不笑采纳,获得10
2秒前
suohaiyun发布了新的文献求助10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
小宋发布了新的文献求助10
3秒前
大个应助科研通管家采纳,获得30
3秒前
吃人陈发布了新的文献求助10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
liuchengrui应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
kagaminelen完成签到,获得积分10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
mengtingmei应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
xdd完成签到,获得积分10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791