Novel method for rapid identification of Listeria monocytogenes based on metabolomics and deep learning

代谢组学 单核细胞增生李斯特菌 鉴定(生物学) 计算生物学 人工智能 卷积神经网络 计算机科学 生物 生物信息学 细菌 遗传学 生态学
作者
Ying Feng,Zhangkai J. Cheng,Xianhu Wei,Moutong Chen,Jumei Zhang,Youxiong Zhang,Liang Xue,Minling Chen,Fan Li,Yuting Shang,Tingting Liang,Yu Ding,Qingping Wu
出处
期刊:Food Control [Elsevier]
卷期号:139: 109042-109042 被引量:9
标识
DOI:10.1016/j.foodcont.2022.109042
摘要

Metabolomics based on the mass spectrometry approach can serve as a platform to detect pathogens and spoilage microorganisms. However, the accurate quantification of biomarkers with lower molecular weight based on mass spectrometry is generally limited by isotope-labeled standards and complicated protocols, which is not conducive to large-scale applications. Here, we developed a novel method that combined metabolomics with deep learning for the identification of Listeria monocytogenes. A convolutional neural network (CNN) model of these three potential biomarkers for L. monocytogenes was established, with a prediction accuracy of 82.2%. Furthermore, metabolic fingerprints composed of 29 metabolites were obtained using pseudotargeted metabolomics approach, which successfully distinguished six common Listeria species in hierarchical cluster analysis. The binary and multiple classifiers of CNN models were established to identify L. monocytogenes and common pathogens, which prediction accuracies were 96.7% and 96.3%, respectively. This novel method combined pseudotargeted metabolomics with deep learning is a promising powerful tool for pathogen identification and classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwx关闭了zwx文献求助
1秒前
2秒前
2秒前
标致晓蓝发布了新的文献求助10
3秒前
wy完成签到,获得积分10
3秒前
虚心依琴发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
SciGPT应助四夕采纳,获得30
7秒前
吴学仕发布了新的文献求助30
7秒前
8秒前
9秒前
甜甜的发布了新的文献求助10
9秒前
9秒前
蝶步韶华发布了新的文献求助10
10秒前
10秒前
11秒前
WAM发布了新的文献求助10
11秒前
12秒前
FelixFelicis完成签到,获得积分10
12秒前
彭于晏应助研友_nxGyxL采纳,获得30
13秒前
14秒前
逆流的鱼发布了新的文献求助10
14秒前
Lucas应助唯伊采纳,获得10
14秒前
大小多少发布了新的文献求助10
15秒前
帕尼灬尼发布了新的文献求助10
15秒前
15秒前
xi完成签到,获得积分10
16秒前
gcr完成签到 ,获得积分10
17秒前
FelixFelicis发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
花川完成签到 ,获得积分10
20秒前
22秒前
浮游应助科研通管家采纳,获得10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693989
求助须知:如何正确求助?哪些是违规求助? 5095107
关于积分的说明 15212740
捐赠科研通 4850704
什么是DOI,文献DOI怎么找? 2601931
邀请新用户注册赠送积分活动 1553766
关于科研通互助平台的介绍 1511712