Novel method for rapid identification of Listeria monocytogenes based on metabolomics and deep learning

代谢组学 单核细胞增生李斯特菌 鉴定(生物学) 计算生物学 人工智能 卷积神经网络 计算机科学 生物 生物信息学 细菌 遗传学 生态学
作者
Ying Feng,Zhangkai J. Cheng,Xianhu Wei,Moutong Chen,Jumei Zhang,Youxiong Zhang,Liang Xue,Minling Chen,Fan Li,Yuting Shang,Tingting Liang,Yu Ding,Qingping Wu
出处
期刊:Food Control [Elsevier]
卷期号:139: 109042-109042 被引量:9
标识
DOI:10.1016/j.foodcont.2022.109042
摘要

Metabolomics based on the mass spectrometry approach can serve as a platform to detect pathogens and spoilage microorganisms. However, the accurate quantification of biomarkers with lower molecular weight based on mass spectrometry is generally limited by isotope-labeled standards and complicated protocols, which is not conducive to large-scale applications. Here, we developed a novel method that combined metabolomics with deep learning for the identification of Listeria monocytogenes. A convolutional neural network (CNN) model of these three potential biomarkers for L. monocytogenes was established, with a prediction accuracy of 82.2%. Furthermore, metabolic fingerprints composed of 29 metabolites were obtained using pseudotargeted metabolomics approach, which successfully distinguished six common Listeria species in hierarchical cluster analysis. The binary and multiple classifiers of CNN models were established to identify L. monocytogenes and common pathogens, which prediction accuracies were 96.7% and 96.3%, respectively. This novel method combined pseudotargeted metabolomics with deep learning is a promising powerful tool for pathogen identification and classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hayden发布了新的文献求助30
刚刚
李健应助yltstt采纳,获得20
刚刚
1秒前
动次打次发布了新的文献求助10
1秒前
1秒前
啊擦删除发布了新的文献求助10
1秒前
Hello应助Queena采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
勿忘9451发布了新的文献求助10
2秒前
3秒前
faye完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
6秒前
小新发布了新的文献求助10
6秒前
7秒前
fishss完成签到,获得积分0
7秒前
肖敏发布了新的文献求助10
7秒前
Owen应助糯米采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
我想当太空人完成签到,获得积分10
8秒前
善学以致用应助酷酷采纳,获得10
9秒前
dcfsef发布了新的文献求助10
9秒前
小小鱼完成签到 ,获得积分10
9秒前
可意发布了新的文献求助10
10秒前
wxy完成签到,获得积分10
10秒前
11秒前
田様应助嘻嘻采纳,获得10
11秒前
NEKO33发布了新的文献求助10
11秒前
HH发布了新的文献求助30
11秒前
yukino发布了新的文献求助10
11秒前
科研通AI6应助小yang采纳,获得30
12秒前
虚心宝贝发布了新的文献求助10
12秒前
乐乐应助健忘的傲芙采纳,获得10
12秒前
李健应助吴畅采纳,获得10
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583465
求助须知:如何正确求助?哪些是违规求助? 4667303
关于积分的说明 14766350
捐赠科研通 4609471
什么是DOI,文献DOI怎么找? 2529219
邀请新用户注册赠送积分活动 1498433
关于科研通互助平台的介绍 1467061