🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

A novel 3D convolutional neural network model with supervised spectral regression for recognition of hyperspectral images of colored wool fiber

高光谱成像 有色的 人工智能 模式识别(心理学) 计算机科学 卷积神经网络 反向传播 色差 人工神经网络 回归 深度学习 特征(语言学) 数学 统计 材料科学 哲学 语言学 复合材料 GSM演进的增强数据速率
作者
Kebin Qiu,Weiguo Chen,Jiajia Shen,Hua Zhou
出处
期刊:Color Research and Application [Wiley]
卷期号:47 (5): 1105-1117
标识
DOI:10.1002/col.22788
摘要

Abstract Prior knowledge of textile fiber colors in blends is useful for color recipe assessment. There have been various methods to improve the accuracy of color recognition from the dataset of colored textile fibers in recent years. However, numerical assessments based on spectral feature and color difference is insufficient, in which the accuracy of color recognition can be affected by morphology and the uneven coloration on a single fiber. This paper proposes a novel 3D convolutional neural network model (3D‐CNN) with supervised spectral regression for the color recognition of hyperspectral images (HSI) of colored textile fiber. The proposed method obtained spatial‐spectral features based on 3D‐CNN, and the true spectrum of each class was used for supervised spectral regression to improve the accuracy. The loss function used was the sum of the supervised classification loss function and the spectral regression loss function model are optimized by mini‐batch‐based backpropagation. The proposed method was trained and tested on the HSI dataset composed of 100 colors of wool fibers acquired through a microscopic hyperspectral imaging system at a ×3.375 optical magnification. The experimental results showed that the proposed method exhibited better performance compared to numerical assessments and other deep learning models, except for efficiency. Specifically, it achieved better recognition performance on sub‐datasets of similar colored and light‐colored wool fiber where subtle inter‐class and large intra‐class variance existed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI5应助曲奇饼干采纳,获得80
1秒前
温暖新蕾完成签到 ,获得积分10
1秒前
liu关注了科研通微信公众号
2秒前
2秒前
郁金香发布了新的文献求助10
3秒前
nkmenghan完成签到,获得积分10
3秒前
漠尘完成签到,获得积分10
3秒前
科研通AI5应助siyan156采纳,获得10
3秒前
4秒前
于晏孙发布了新的文献求助10
4秒前
Echo完成签到,获得积分10
4秒前
风笛发布了新的文献求助10
5秒前
5秒前
可爱的函函应助鲁西西采纳,获得10
5秒前
句号发布了新的文献求助10
5秒前
6秒前
科研通AI5应助LOWRY采纳,获得30
6秒前
7秒前
7秒前
蛋包洋芋完成签到,获得积分10
7秒前
顾矜应助静心安逸采纳,获得10
7秒前
9秒前
9秒前
幸福五发布了新的文献求助10
10秒前
10秒前
10秒前
XIXI发布了新的文献求助10
11秒前
11秒前
11秒前
执着的老虎完成签到,获得积分10
11秒前
zxcv完成签到,获得积分10
11秒前
11秒前
晶顶发布了新的文献求助30
12秒前
于晏孙完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
张明玉发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Primate Tourism: A Tool for Conservation? 500
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3599007
求助须知:如何正确求助?哪些是违规求助? 3167687
关于积分的说明 9554885
捐赠科研通 2874117
什么是DOI,文献DOI怎么找? 1577880
邀请新用户注册赠送积分活动 741837
科研通“疑难数据库(出版商)”最低求助积分说明 724869