阳极
材料科学
过电位
锌
成核
电镀(地质)
阴极
电偶阳极
金属
枝晶(数学)
压力(语言学)
化学工程
电极
冶金
电化学
阴极保护
化学
工程类
有机化学
物理化学
哲学
几何学
地质学
语言学
数学
地球物理学
作者
Jianan Gu,Yi Tao,Hao Chen,Zhenjiang Cao,Yongzheng Zhang,Zhiguo Du,Yanglansen Cui,Shubin Yang
标识
DOI:10.1002/aenm.202200115
摘要
Abstract Zinc anodes are promising for zinc‐based batteries owing to the high theoretical capacity (820 mAh g −1 ), environmental‐friendliness, and good safety, but the uncontrollable dendrites greatly hamper their practical applications. Here, a special nonmodulus liquid GaIn electrode is designed to help understand the failure mechanism of Zn anodes, demonstrating that there is a huge crystalline stress in the plating Zn anode that causes the fast growth of substantial Zn dendrites. To solve this issue, a zinc‐enriched liquid metal (ZnGaIn) anode on flexible MXene layers (ZnGaIn//MXene) is fabricated, enabling efficient release of the stress in the plating Zn anode. Moreover, owing to the presence of zinc‐based liquid metal, the nucleation energy barrier is largely reduced and meanwhile the nucleation overpotential of Zn is reduced to 0 V versus Zn 2+ /Zn. Thus, the as‐prepared flexible zinc‐based anode delivers a long cycle life and high rate capabilities up to 8.0 mA cm −2 . As coupled with a MnO 2 cathode, a full cell with ZnGaIn//MXene anode exhibits a stable and long lifespan, greatly benefiting the development of next‐generation zinc‐based batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI