Ship emissions reduction using weather ship routing optimisation

环境科学 布线(电子设计自动化) 燃料效率 气象学 海洋工程 还原(数学) 风暴 计算机科学 工程类 汽车工程 地理 计算机网络 几何学 数学
作者
Clara Borén,Marcel·la Castells Sanabra,Manel Grifoll
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part M: Journal Of Engineering For The Maritime Environment [SAGE]
卷期号:236 (4): 856-867 被引量:5
标识
DOI:10.1177/14750902221082901
摘要

A significant proportion of global carbon dioxide emissions are attributed to ocean-sailing ships and shipping emissions are predicted to double in less than 30 years. This paper investigates the benefit of using weather ship routing optimisation, assessing the ship emissions for minimum distance routes and optimised routes. The present contribution merges the estimation of shipping pollutants and their mitigation through weather routing optimisation; two lines of research widely analysed separately but seldom discussed together. A previously developed open software of weather ship routing is used to obtain the minimum cost (i.e. optimised route) in terms of sailing time, using high-resolution wave forecasting. The assessment of fuel consumption and ship emissions calculations were inspired by the STEAM2 bottom-up approach, in conjunction with the estimation of the power increase needed to overcome speed decrement due to waves. Several scenarios covering the Western Mediterranean Short Sea Shipping routes (from 24 to 600 nautical miles and using a real Ro-Pax vessel) are compared in terms of emissions between the minimum distance route and the optimum. The ship routing optimisation reveals a reduction up to 30% of ship emissions during severe storms on longer routes. Nevertheless, all the cases studied show emissions mitigation when ship routing optimisation is used. The expected increase of extreme weather events, in terms of frequency, intensity and duration due to climate change, suggests a gradual gain of implementing weather ship routing optimisation in all types of routes, regardless of the distance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘎嘎顺利发布了新的文献求助10
刚刚
按住心动完成签到,获得积分10
1秒前
星辰大海应助屁王采纳,获得10
1秒前
Owen应助彬彬采纳,获得10
2秒前
2秒前
Jasen完成签到,获得积分10
2秒前
轻轻地呼吸完成签到,获得积分10
2秒前
2秒前
明天更好发布了新的文献求助10
2秒前
3秒前
猪血糕yu完成签到,获得积分10
3秒前
通~发布了新的文献求助10
3秒前
4秒前
科研小垃圾完成签到,获得积分10
4秒前
5秒前
生动的煎蛋完成签到,获得积分10
5秒前
NexusExplorer应助marinemiao采纳,获得10
5秒前
CXS完成签到,获得积分10
6秒前
6秒前
6秒前
小郭完成签到,获得积分10
6秒前
6秒前
123发布了新的文献求助10
7秒前
NN123完成签到 ,获得积分10
7秒前
FFFFFFF应助艺玲采纳,获得10
8秒前
袁访天发布了新的文献求助10
8秒前
辇道增七完成签到,获得积分10
8秒前
8秒前
幽默的太阳完成签到 ,获得积分10
9秒前
9秒前
Nininni完成签到,获得积分10
9秒前
Tao完成签到,获得积分10
9秒前
9秒前
zqh发布了新的文献求助10
9秒前
9秒前
虫虫发布了新的文献求助10
10秒前
无情豪英完成签到 ,获得积分10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740