Ship emissions reduction using weather ship routing optimisation

环境科学 布线(电子设计自动化) 燃料效率 气象学 海洋工程 还原(数学) 风暴 计算机科学 工程类 汽车工程 地理 计算机网络 几何学 数学
作者
Clara Borén,Marcel·la Castells Sanabra,Manel Grifoll
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part M: Journal Of Engineering For The Maritime Environment [SAGE]
卷期号:236 (4): 856-867 被引量:5
标识
DOI:10.1177/14750902221082901
摘要

A significant proportion of global carbon dioxide emissions are attributed to ocean-sailing ships and shipping emissions are predicted to double in less than 30 years. This paper investigates the benefit of using weather ship routing optimisation, assessing the ship emissions for minimum distance routes and optimised routes. The present contribution merges the estimation of shipping pollutants and their mitigation through weather routing optimisation; two lines of research widely analysed separately but seldom discussed together. A previously developed open software of weather ship routing is used to obtain the minimum cost (i.e. optimised route) in terms of sailing time, using high-resolution wave forecasting. The assessment of fuel consumption and ship emissions calculations were inspired by the STEAM2 bottom-up approach, in conjunction with the estimation of the power increase needed to overcome speed decrement due to waves. Several scenarios covering the Western Mediterranean Short Sea Shipping routes (from 24 to 600 nautical miles and using a real Ro-Pax vessel) are compared in terms of emissions between the minimum distance route and the optimum. The ship routing optimisation reveals a reduction up to 30% of ship emissions during severe storms on longer routes. Nevertheless, all the cases studied show emissions mitigation when ship routing optimisation is used. The expected increase of extreme weather events, in terms of frequency, intensity and duration due to climate change, suggests a gradual gain of implementing weather ship routing optimisation in all types of routes, regardless of the distance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助LELE采纳,获得10
刚刚
Ankky发布了新的文献求助10
刚刚
1秒前
2秒前
宋晓静完成签到 ,获得积分10
6秒前
百川发布了新的文献求助10
6秒前
不配.应助心灵美的毛巾采纳,获得20
7秒前
疾风知劲草完成签到,获得积分10
8秒前
8秒前
10秒前
瘦瘦万怨完成签到,获得积分10
11秒前
正直的妍发布了新的文献求助10
14秒前
wlz发布了新的文献求助10
14秒前
15秒前
百川完成签到,获得积分10
17秒前
17秒前
19秒前
19秒前
19秒前
22秒前
22秒前
缓慢思枫完成签到,获得积分10
23秒前
弘毅君完成签到,获得积分10
23秒前
23秒前
慕青应助sxw采纳,获得10
24秒前
25秒前
cao发布了新的文献求助10
26秒前
弘毅君发布了新的文献求助10
28秒前
慕青应助wenxiang采纳,获得50
28秒前
28秒前
29秒前
29秒前
852应助雨后彩虹伤采纳,获得10
30秒前
30秒前
31秒前
32秒前
wang完成签到 ,获得积分10
32秒前
32秒前
咖啡不苦完成签到,获得积分10
33秒前
LL发布了新的文献求助10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138641
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791857
捐赠科研通 2445999
什么是DOI,文献DOI怎么找? 1300813
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079