In Vitro Fiber-Probe-Based Identification of Pathogens in Biofilms by Raman Spectroscopy

生物膜 拉曼光谱 化学 纤维 胞外聚合物 微生物学 细菌 生物 光学 物理 遗传学 有机化学
作者
Haodong Shen,Petra Rösch,Mathias W. Pletz,Jürgen Popp
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (13): 5375-5381 被引量:11
标识
DOI:10.1021/acs.analchem.2c00029
摘要

Biofilms are the preferred habitat of microorganisms on living and artificial surfaces. Biofilm-related infections, such as infections of medical implants, are difficult to treat, and due to a reduced cultivability of the included bacteria, difficult to diagnose. Therefore, it is highly important to rapidly identify and investigate biofilms on implant surfaces, e.g., during surgery. In this study, we present fiber-probe-based Raman spectroscopy with an excitation wavelength of 785 nm, which was applied to investigate six different pathogen species involved in biofilm-related infections. Biofilms were cultivated in a drip flow reactor, which can model a biofilm growth environment. The signals collected from a fiber probe allowed us to collect Raman spectra not only from the embedded bacterial and yeast cells but also the surrounding extracellular polymeric substance matrix. This information was used in a classification model. The model consists of a principal component analysis in combination with linear discriminant analysis and was examined by applying a leave-one-batch-out cross-validation. This model achieved a classification accuracy of 93.8%. In addition, the identification accuracy increased up to 97.5% when clinical strains were used for identification. A fiber-probe-based Raman spectroscopy method combined with a chemometric analysis might therefore serve as a fast, accurate, and portable strategy for the species identification of biofilm-related infections, e.g., during surgical procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助一直采纳,获得10
1秒前
小虎应助123444采纳,获得10
2秒前
柯一一应助敏er好学采纳,获得10
3秒前
lzx应助云栖采纳,获得50
3秒前
王晓宇发布了新的文献求助10
5秒前
coldspringhao完成签到,获得积分10
11秒前
曾经的妍完成签到,获得积分10
12秒前
12秒前
叮当发布了新的文献求助10
13秒前
15秒前
爆米花完成签到,获得积分10
16秒前
哈哈大笑完成签到,获得积分10
19秒前
Fngz3发布了新的文献求助10
19秒前
24秒前
Ran完成签到 ,获得积分10
24秒前
孤星泪完成签到,获得积分10
24秒前
颖宝老公完成签到,获得积分10
26秒前
冥月发布了新的文献求助10
28秒前
羽化成仙完成签到 ,获得积分10
29秒前
科研通AI2S应助zhouji采纳,获得10
29秒前
小蘑菇应助Jenny采纳,获得10
31秒前
深情安青应助科研通管家采纳,获得10
31秒前
领导范儿应助科研通管家采纳,获得10
32秒前
Akim应助科研通管家采纳,获得10
32秒前
kedaya应助科研通管家采纳,获得10
32秒前
贰鸟应助科研通管家采纳,获得10
32秒前
完美世界应助科研通管家采纳,获得10
32秒前
Gauss应助科研通管家采纳,获得30
32秒前
贰鸟应助科研通管家采纳,获得10
32秒前
FashionBoy应助科研通管家采纳,获得10
32秒前
bkagyin应助科研通管家采纳,获得10
32秒前
贰鸟应助科研通管家采纳,获得10
32秒前
贰鸟应助科研通管家采纳,获得10
32秒前
Olivia完成签到 ,获得积分10
33秒前
火山上的鲍师傅完成签到,获得积分10
33秒前
zxcvbnm完成签到 ,获得积分10
35秒前
yile完成签到,获得积分10
35秒前
37秒前
香蕉梨愁完成签到 ,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343