Construction of a novel microRNA-based signature for predicting the prognosis of glioma

胶质瘤 列线图 小RNA 生物 肿瘤科 比例危险模型 内科学 生物信息学 癌症研究
作者
Gaoxin Liu,Xiaoming Rong,Xinrou Lin,Hongxuan Wang,Lei He,Ying Peng
出处
期刊:International Journal of Neuroscience [Informa]
卷期号:: 1-11
标识
DOI:10.1080/00207454.2021.1993848
摘要

Background and purpose: Glioma is a frequent primary brain tumor. MicroRNAs (miRNA) have been shown to potentially play a crucial part in tumor development. Based on miRNAs and clinical factors, a model was constructed to predict the glioma prognosis. Methods: The miRNA expression profiles of glioma come from The Cancer Genome Atlas (TCGA, training group) and Chinese Glioma Genome Atlas (CGGA, validation group). Regression analyses of Cox and Lasso were applied to identity miRNAs associated with glioma prognosis in the TCGA database. The miRNAs were combined with clinical factors to construct individualized prognostic prediction models, whose performance was validated in the CGGA database. The role of miRNA in glioma development was investigated by in vitro experiments.Results: We identified five key miRNAs associated with glioma prognosis and constructed a prediction model. The area under ROC curve for predicting 3-year survival of glioma patients in the TCGA and CGGA groups was 0.844 and 0.770, respectively. The nomogram constructed using the miRNA risk scores and clinical factors showed high accuracy of prediction in the TCGA group (C-index of 0.820) and the CGGA group (C-index of 0.722). The miR-196b-5p altered the migration, proliferation, invasion, and apoptosis of glioma cells by regulating target genes, according to in vitro experiments.Conclusions: A miRNA-based individualized prognostic prediction model was constructed for glioma and miR-196b-5p was identified as a potential biomarker of glioma development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪猎豹完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助20
刚刚
1秒前
一口发布了新的文献求助10
1秒前
2秒前
xiaoyi发布了新的文献求助10
2秒前
3秒前
星辰大海完成签到,获得积分10
3秒前
笑笑发布了新的文献求助10
3秒前
甜粥完成签到,获得积分20
4秒前
sun发布了新的文献求助10
4秒前
CodeCraft应助沐易采纳,获得10
4秒前
4秒前
5秒前
5秒前
无极微光应助克偃统统采纳,获得10
5秒前
小二郎应助敏感狗采纳,获得10
6秒前
甜粥发布了新的文献求助10
6秒前
whitexue发布了新的文献求助10
6秒前
MgZn发布了新的社区帖子
6秒前
淡定的彩虹完成签到,获得积分10
8秒前
8秒前
华仔应助汪汪队立大功采纳,获得10
8秒前
9秒前
9秒前
lulu发布了新的文献求助10
9秒前
For发布了新的文献求助10
9秒前
9秒前
cz111完成签到 ,获得积分10
11秒前
Rain完成签到,获得积分10
11秒前
una发布了新的文献求助10
11秒前
华仔应助501757473采纳,获得10
11秒前
邹南松完成签到,获得积分10
11秒前
11秒前
忧虑的以菱完成签到,获得积分10
12秒前
深情安青应助zero采纳,获得10
12秒前
无私寻梅关注了科研通微信公众号
12秒前
12秒前
小巧的映易完成签到,获得积分10
13秒前
科勒基侈发布了新的文献求助20
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442916
求助须知:如何正确求助?哪些是违规求助? 4552957
关于积分的说明 14239980
捐赠科研通 4474411
什么是DOI,文献DOI怎么找? 2452002
邀请新用户注册赠送积分活动 1442958
关于科研通互助平台的介绍 1418675