Construction of a novel microRNA-based signature for predicting the prognosis of glioma

胶质瘤 列线图 小RNA 生物 肿瘤科 比例危险模型 内科学 生物信息学 癌症研究
作者
Gaoxin Liu,Xiaoming Rong,Xinrou Lin,Hongxuan Wang,Lei He,Ying Peng
出处
期刊:International Journal of Neuroscience [Informa]
卷期号:: 1-11
标识
DOI:10.1080/00207454.2021.1993848
摘要

Background and purpose: Glioma is a frequent primary brain tumor. MicroRNAs (miRNA) have been shown to potentially play a crucial part in tumor development. Based on miRNAs and clinical factors, a model was constructed to predict the glioma prognosis. Methods: The miRNA expression profiles of glioma come from The Cancer Genome Atlas (TCGA, training group) and Chinese Glioma Genome Atlas (CGGA, validation group). Regression analyses of Cox and Lasso were applied to identity miRNAs associated with glioma prognosis in the TCGA database. The miRNAs were combined with clinical factors to construct individualized prognostic prediction models, whose performance was validated in the CGGA database. The role of miRNA in glioma development was investigated by in vitro experiments.Results: We identified five key miRNAs associated with glioma prognosis and constructed a prediction model. The area under ROC curve for predicting 3-year survival of glioma patients in the TCGA and CGGA groups was 0.844 and 0.770, respectively. The nomogram constructed using the miRNA risk scores and clinical factors showed high accuracy of prediction in the TCGA group (C-index of 0.820) and the CGGA group (C-index of 0.722). The miR-196b-5p altered the migration, proliferation, invasion, and apoptosis of glioma cells by regulating target genes, according to in vitro experiments.Conclusions: A miRNA-based individualized prognostic prediction model was constructed for glioma and miR-196b-5p was identified as a potential biomarker of glioma development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到,获得积分10
刚刚
刚刚
1秒前
Orange应助雨做的云霞采纳,获得10
1秒前
南星完成签到 ,获得积分10
1秒前
困敦发布了新的文献求助10
2秒前
2秒前
momo发布了新的文献求助10
3秒前
小马甲应助干鞅采纳,获得10
4秒前
4秒前
李健应助jiao采纳,获得10
4秒前
6秒前
Lizhuzhu发布了新的文献求助10
7秒前
华仔应助小水采纳,获得10
7秒前
9秒前
9秒前
cdsd发布了新的文献求助10
9秒前
张博凯发布了新的文献求助10
14秒前
夏惋清完成签到 ,获得积分0
16秒前
惠飞薇完成签到 ,获得积分10
16秒前
18秒前
Lili完成签到,获得积分10
19秒前
Jasper应助李李05采纳,获得10
20秒前
15274887998发布了新的文献求助10
20秒前
21秒前
巫马尔槐完成签到,获得积分10
21秒前
开心的芳发布了新的文献求助10
22秒前
风趣静枫完成签到,获得积分10
23秒前
25秒前
迪er发布了新的文献求助10
25秒前
如意寻桃关注了科研通微信公众号
25秒前
27秒前
27秒前
29秒前
wheat完成签到,获得积分10
29秒前
zzz发布了新的文献求助10
30秒前
困敦发布了新的文献求助10
30秒前
SHIRO完成签到,获得积分10
32秒前
ying发布了新的文献求助10
32秒前
科研通AI6应助开心的芳采纳,获得10
33秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384713
求助须知:如何正确求助?哪些是违规求助? 4507566
关于积分的说明 14028354
捐赠科研通 4417204
什么是DOI,文献DOI怎么找? 2426357
邀请新用户注册赠送积分活动 1419123
关于科研通互助平台的介绍 1397426