Construction of a novel microRNA-based signature for predicting the prognosis of glioma

胶质瘤 列线图 小RNA 生物 肿瘤科 比例危险模型 内科学 生物信息学 癌症研究
作者
Gaoxin Liu,Xiaoming Rong,Xinrou Lin,Hongxuan Wang,Lei He,Ying Peng
出处
期刊:International Journal of Neuroscience [Informa]
卷期号:: 1-11
标识
DOI:10.1080/00207454.2021.1993848
摘要

Background and purpose: Glioma is a frequent primary brain tumor. MicroRNAs (miRNA) have been shown to potentially play a crucial part in tumor development. Based on miRNAs and clinical factors, a model was constructed to predict the glioma prognosis. Methods: The miRNA expression profiles of glioma come from The Cancer Genome Atlas (TCGA, training group) and Chinese Glioma Genome Atlas (CGGA, validation group). Regression analyses of Cox and Lasso were applied to identity miRNAs associated with glioma prognosis in the TCGA database. The miRNAs were combined with clinical factors to construct individualized prognostic prediction models, whose performance was validated in the CGGA database. The role of miRNA in glioma development was investigated by in vitro experiments.Results: We identified five key miRNAs associated with glioma prognosis and constructed a prediction model. The area under ROC curve for predicting 3-year survival of glioma patients in the TCGA and CGGA groups was 0.844 and 0.770, respectively. The nomogram constructed using the miRNA risk scores and clinical factors showed high accuracy of prediction in the TCGA group (C-index of 0.820) and the CGGA group (C-index of 0.722). The miR-196b-5p altered the migration, proliferation, invasion, and apoptosis of glioma cells by regulating target genes, according to in vitro experiments.Conclusions: A miRNA-based individualized prognostic prediction model was constructed for glioma and miR-196b-5p was identified as a potential biomarker of glioma development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助咎思远采纳,获得10
1秒前
可乐应助Leolefroy采纳,获得10
1秒前
阿轩发布了新的文献求助10
1秒前
3秒前
kkkl完成签到,获得积分10
4秒前
FashionBoy应助西瓜采纳,获得10
5秒前
5秒前
5秒前
6秒前
司空秋烟发布了新的文献求助30
6秒前
yubq发布了新的文献求助30
6秒前
陈军给含糊的晓凡的求助进行了留言
6秒前
zdy完成签到,获得积分10
7秒前
自觉的山河完成签到,获得积分10
9秒前
9秒前
毛毛弟发布了新的文献求助80
9秒前
66发布了新的文献求助10
10秒前
缘起性空完成签到,获得积分10
10秒前
LL完成签到,获得积分10
11秒前
12秒前
13秒前
Le_Chiot发布了新的文献求助10
14秒前
14秒前
Frank给浩多多的求助进行了留言
15秒前
白米完成签到 ,获得积分10
15秒前
16秒前
16秒前
传统的长颈鹿完成签到,获得积分10
17秒前
17秒前
不安青牛应助彭于晏采纳,获得10
17秒前
18秒前
梦华老师发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
嘉博学长发布了新的文献求助10
20秒前
21秒前
22秒前
nehsiac发布了新的文献求助10
22秒前
an完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7879102
捐赠科研通 2467351
什么是DOI,文献DOI怎么找? 1313394
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919