Pore-scale simulation of nanoparticle transport and deposition in a microchannel using a Lagrangian approach

纳米流体 纳米颗粒 微通道 多孔介质 材料科学 沉积(地质) 纳米流体学 纳米技术 流体力学 机械 多孔性 复合材料 物理 沉积物 生物 古生物学
作者
Milad Ramezanpour,Majid Siavashi,Ali Q. Raeini,Martin J. Blunt
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:355: 118948-118948 被引量:11
标识
DOI:10.1016/j.molliq.2022.118948
摘要

The application of nanoparticles to a fluid improves heat transfer and hydrodynamics, especially in porous media. To analyze the flow of nanoparticles and heat transfer in porous media at the pore scale, simulation in micro-scale channels of porous media is necessary. One concern is the deposition of nanoparticles to solid surfaces, which reduces the amount of material available in the bulk fluid. Also, in porous media, the nanoparticle deposition increases the surface roughness of pore surfaces, affecting the volumetric flow rate of nanofluid. Nanoparticle transport and deposition in a microchannel (as a representation of pore) are investigated numerically. The open-source library of OpenFOAM is used, and the Eulerian-Lagrangian (EL) approach is employed to simulate nanoparticles interacting with the base fluid and the surfaces of the microchannel. Integration of all forces exerted on nanoparticles, from base fluid and also microchannel’s surfaces are considered simultaneously. Brownian motion, drag, buoyancy, gravity, and Saffman lift forces are considered between nanoparticles and the base fluid. Van der Waals and electrostatic double-layer forces based on DLVO theory are considered between nanoparticles and microchannel surfaces. The deposition ratio of nanoparticles (the fraction of nanoparticles that deposit on the solid surface) is analyzed by the variation of nanoparticle diameter, fluid velocity, temperature, surface potentials, and double-layer thickness. It is assumed that the nanofluid is dilute, and the collisions between the nanoparticles are neglected. The results of nanoparticle deposition ratio are validated through comparison with available data in the literature. It has been shown that the nanoparticle deposition ratio decreases from 0.98 to 0.4 when the nanoparticle diameter increases from 30 to 150 nm. The effect of Van der Waals force on the enhancement of nanoparticle deposition ratio is about 1.6 %. Next, the deposition of nanoparticles is studied for different Reynolds number values, surface potential, nanoparticle radius, and double-layer thickness. Brownian motion dominates the behavior; increasing temperature and decreasing nanoparticle diameter will increase nanoparticle deposition. The magnitude of the nanoparticle and surface potentials and the double layer thickness are the two essential parameters that control the electrostatic double-layer force; its effect on deposition is also investigated. It has been concluded that the rise of the surface potential value decreases the deposition ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜月残阳完成签到,获得积分10
1秒前
1秒前
1秒前
九9关注了科研通微信公众号
3秒前
5秒前
5秒前
7秒前
8秒前
一枝杷枇发布了新的文献求助10
9秒前
lalala发布了新的文献求助10
9秒前
W查查完成签到,获得积分10
10秒前
英姑应助修水县1个科研人采纳,获得10
13秒前
13秒前
14秒前
14秒前
14秒前
小巧问筠关注了科研通微信公众号
15秒前
田様应助阿涵采纳,获得10
16秒前
peach应助阿涵采纳,获得10
16秒前
17秒前
18秒前
煜猪猪发布了新的文献求助10
19秒前
19秒前
20秒前
雾岛少帅翔掌门完成签到,获得积分10
20秒前
pyq发布了新的文献求助10
21秒前
21秒前
Ava应助wjj_mario采纳,获得10
21秒前
瘦瘦小萱完成签到 ,获得积分10
21秒前
star发布了新的文献求助10
22秒前
忘崽子小拳头完成签到,获得积分10
23秒前
23秒前
24秒前
Tr完成签到,获得积分10
24秒前
25秒前
去小岛上流浪完成签到,获得积分10
25秒前
25秒前
Felicity发布了新的文献求助10
25秒前
Xxxxzzz完成签到,获得积分10
25秒前
女青发布了新的文献求助10
27秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222338
求助须知:如何正确求助?哪些是违规求助? 2870958
关于积分的说明 8173314
捐赠科研通 2537983
什么是DOI,文献DOI怎么找? 1370116
科研通“疑难数据库(出版商)”最低求助积分说明 645683
邀请新用户注册赠送积分活动 619507