Differentiation of high-grade glioma and primary central nervous system lymphoma: Multiparametric imaging of the enhancing tumor and peritumoral regions based on hybrid 18F-FDG PET/MRI

医学 核医学 原发性中枢神经系统淋巴瘤 接收机工作特性 逻辑回归 有效扩散系数 胶质瘤 多元分析 曲线下面积 淋巴瘤 磁共振成像 放射科 病理 内科学 癌症研究
作者
Shu Zhang,Jie Wang,Kai Wang,Xiaotong Li,Xiaobin Zhao,Qian Chen,Wei Zhang,Lin Ai
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:150: 110235-110235 被引量:10
标识
DOI:10.1016/j.ejrad.2022.110235
摘要

To investigate the value of the 18F-FDG PET/MRI multiparametric model in the differentiation of high-grade glioma (HGG) and primary central nervous system lymphoma (PCNSL), with emphasis on the quantitative analysis of the enhancing tumor (ET) and non-enhancing peritumoral region (PTR).Forty-five patients with HGG and 20 patients with PCNSL who underwent simultaneous 18F-FDG PET, arterial spin labelling perfusion-weighted imaging and diffusion-weighted imaging with hybrid PET/MRI before treatment were retrospectively enrolled. The relative maximum standardized uptake value (rSUVmax), relative maximum cerebral blood flow (rCBFmax) and relative minimum apparent diffusion coefficient (rADCmin) in both the ET and NPR were calculated and compared between HGG and PCNSL. Multivariate logistic regression was used to determine the best logistic regression model (LRM) for classification. Receiver operating curve analysis was used to assess diagnostic performance.In the ET, HGG showed significantly lower rSUVmax values but higher rCBFmax and rADCmin than PCNSL (all P < 0.05). In the PTR, HGG demonstrated significantly higher rSUVmax and rCBFmax but lower rADCmin than PCNSL (all P < 0.05). Multivariate logistic regression based on quantitative parameters revealed that the LRM consisting of rSUVmax_ET, rADCmin_ET and rCBFmax_PTR had significantly improved diagnostic performance in differentiating HGG from PCNSL than single parameter alone, with an AUC of 0.980 and an accuracy of 95.4%. Multivariate logistic regression incorporating quantitative parameters and conventional MRI features revealed that the LRM consisting of rSUVmax_ET, rCBFmax_PTR and enhancement pattern yielded a slightly higher AUC of 0.989 and an identical accuracy of 95.4%. No significant difference in AUCs was detected between the two LRMs (P = 0.233).Multiparametric 18F-FDG PET/MRI diagnostic model based on conventional MRI features and quantitative analysis of the enhancing tumors and peritumoral regions is superior to single parameter in the differentiation of HGG and PCNSL, which should be considered in the clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小竹笋完成签到,获得积分10
刚刚
1秒前
烂漫的涫完成签到 ,获得积分10
1秒前
2秒前
2秒前
开心的绮玉完成签到,获得积分10
3秒前
Wang发布了新的文献求助10
3秒前
牛6发布了新的文献求助10
4秒前
英姑应助蓝精灵采纳,获得10
4秒前
4秒前
KTdyd完成签到,获得积分10
5秒前
xiaohei发布了新的文献求助10
5秒前
领导范儿应助余生请指教采纳,获得10
6秒前
6秒前
6秒前
7秒前
斯文败类应助核桃采纳,获得30
8秒前
深情安青应助核桃采纳,获得10
8秒前
Ava应助核桃采纳,获得10
8秒前
研友_VZG7GZ应助核桃采纳,获得10
8秒前
Ava应助核桃采纳,获得10
8秒前
搜集达人应助核桃采纳,获得10
8秒前
传奇3应助核桃采纳,获得10
8秒前
慕青应助核桃采纳,获得10
8秒前
慕青应助核桃采纳,获得10
8秒前
8秒前
9秒前
远志发布了新的文献求助10
10秒前
王图图发布了新的文献求助10
11秒前
12秒前
12秒前
槐序二三发布了新的文献求助10
12秒前
ZA发布了新的文献求助10
12秒前
13秒前
大意的小馒头完成签到,获得积分10
14秒前
牛6完成签到,获得积分10
15秒前
酷波er应助Wang采纳,获得10
17秒前
JamesPei应助自信尔竹采纳,获得10
18秒前
QDU发布了新的文献求助10
18秒前
Hilda007发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541