已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robust deep learning-based seismic inversion workflow using temporal convolutional networks

反演(地质) 工作流程 计算机科学 深度学习 卷积神经网络 合成数据 人工神经网络 地震反演 地球物理学 小波 数据挖掘 人工智能 地质学 地震学 数据同化 物理 数据库 气象学 构造学
作者
Robert Smith,Philippe Nivlet,Hussain Alfayez,Nasher M. AlBinHassan
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:10 (2): SC41-SC55 被引量:10
标识
DOI:10.1190/int-2021-0142.1
摘要

Seismic inversion is the process of converting seismic reflectivity data into physical subsurface properties. The most common inversion methods use physics-based forward modeling, but these require time-consuming steps, such as initial model building and wavelet extraction. Coherent noise in the seismic volume also may lead to suboptimal results. Advances in deep learning enable the development of new geophysical workflows that may help overcome these challenges. One example is the temporal convolutional network (TCN), a deep neural network that learns from sequential data, such as seismic traces. Previous research using the TCN architecture has indicated promising inversion results on synthetic data. However, applying the method to field data has several additional challenges that need to be considered, including complex noise and limited well availability. We used a poststack field data set containing coherent noise to evaluate the TCN approach for acoustic impedance inversion under these conditions. Despite the small data set, a TCN trained using traces and logs acquired at well locations produced better results than conventional inversion when supplemented with an additional time feature. While the physics-based inversion created false artifacts related to the noise, the neural network approach learned to ignore the suspected multiple events. Supervised learning using well data also makes semi-automated inversion a possibility. However, obtaining acceptable results using the few locations with logged boreholes may only be possible in relatively simple geological scenarios. To overcome the issue of small data sets, we developed a workflow for generating realistic synthetic data to provide more samples and variation for model training. A TCN trained using synthetic data ultimately produced the best impedance estimates, but care is needed to ensure the synthetic traces contain realistic noise. Overall, we show that a TCN can successfully invert seismic data contaminated with coherent noise, producing superior results compared to model-based inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
121314wld发布了新的文献求助10
2秒前
3秒前
设计师做做人完成签到,获得积分10
5秒前
汉堡包应助吃瓜少女采纳,获得10
6秒前
9秒前
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
11秒前
加菲丰丰应助科研通管家采纳,获得20
11秒前
华仔应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
13秒前
16秒前
所所应助丸子她爸采纳,获得20
17秒前
17秒前
lengyan发布了新的文献求助10
23秒前
26秒前
26秒前
和谐蛋蛋完成签到,获得积分10
26秒前
共享精神应助zwzh采纳,获得10
29秒前
阿荷荷发布了新的文献求助30
30秒前
Zeon723完成签到 ,获得积分10
31秒前
木筝丹青完成签到,获得积分10
31秒前
32秒前
田様应助aixue采纳,获得10
34秒前
34秒前
芸芸发布了新的文献求助10
35秒前
36秒前
37秒前
丸子她爸发布了新的文献求助20
38秒前
张尧摇摇摇完成签到 ,获得积分20
39秒前
阿荷荷完成签到,获得积分10
40秒前
lvsehx发布了新的文献求助10
41秒前
lengyan发布了新的文献求助10
41秒前
45秒前
vpothello完成签到,获得积分10
47秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158547
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883311
捐赠科研通 2468389
什么是DOI,文献DOI怎么找? 1314098
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601963