Robust deep learning-based seismic inversion workflow using temporal convolutional networks

反演(地质) 工作流程 计算机科学 深度学习 卷积神经网络 合成数据 人工神经网络 地震反演 地球物理学 小波 数据挖掘 人工智能 地质学 地震学 数据同化 物理 数据库 气象学 构造学
作者
Robert Smith,Philippe Nivlet,Hussain Alfayez,Nasher M. AlBinHassan
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:10 (2): SC41-SC55 被引量:10
标识
DOI:10.1190/int-2021-0142.1
摘要

Seismic inversion is the process of converting seismic reflectivity data into physical subsurface properties. The most common inversion methods use physics-based forward modeling, but these require time-consuming steps, such as initial model building and wavelet extraction. Coherent noise in the seismic volume also may lead to suboptimal results. Advances in deep learning enable the development of new geophysical workflows that may help overcome these challenges. One example is the temporal convolutional network (TCN), a deep neural network that learns from sequential data, such as seismic traces. Previous research using the TCN architecture has indicated promising inversion results on synthetic data. However, applying the method to field data has several additional challenges that need to be considered, including complex noise and limited well availability. We used a poststack field data set containing coherent noise to evaluate the TCN approach for acoustic impedance inversion under these conditions. Despite the small data set, a TCN trained using traces and logs acquired at well locations produced better results than conventional inversion when supplemented with an additional time feature. While the physics-based inversion created false artifacts related to the noise, the neural network approach learned to ignore the suspected multiple events. Supervised learning using well data also makes semi-automated inversion a possibility. However, obtaining acceptable results using the few locations with logged boreholes may only be possible in relatively simple geological scenarios. To overcome the issue of small data sets, we developed a workflow for generating realistic synthetic data to provide more samples and variation for model training. A TCN trained using synthetic data ultimately produced the best impedance estimates, but care is needed to ensure the synthetic traces contain realistic noise. Overall, we show that a TCN can successfully invert seismic data contaminated with coherent noise, producing superior results compared to model-based inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyj1完成签到 ,获得积分10
刚刚
哈哈哈发布了新的文献求助10
1秒前
XYZ完成签到 ,获得积分10
1秒前
cqwswfl发布了新的文献求助10
2秒前
明亮的小蘑菇应助开心采纳,获得30
4秒前
4秒前
忧虑的翠彤完成签到,获得积分10
5秒前
5秒前
5秒前
HYLynn完成签到,获得积分10
5秒前
蔡蔡完成签到 ,获得积分10
6秒前
crystaler完成签到,获得积分10
6秒前
kk完成签到,获得积分10
7秒前
科研通AI2S应助hh采纳,获得10
9秒前
LR发布了新的文献求助10
9秒前
crystaler发布了新的文献求助10
9秒前
lm完成签到 ,获得积分10
9秒前
9秒前
落寞依珊发布了新的文献求助10
10秒前
10秒前
公司账号2发布了新的文献求助10
13秒前
mushanes发布了新的文献求助10
14秒前
无花果应助猪猪hero采纳,获得10
14秒前
顾矜应助Ta采纳,获得10
16秒前
16秒前
Mono完成签到 ,获得积分10
16秒前
17秒前
LR完成签到,获得积分10
19秒前
纯洁的晟宝儿完成签到,获得积分20
20秒前
Lucas应助公司账号2采纳,获得30
22秒前
犹豫海白完成签到,获得积分10
24秒前
田様应助就在咫尺之间采纳,获得10
25秒前
26秒前
lewis17发布了新的文献求助10
27秒前
张润琦完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助150
28秒前
521发布了新的文献求助10
29秒前
别不开星完成签到,获得积分10
31秒前
大个应助yongtao采纳,获得10
31秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673