A precise efficacy determination strategy of traditional Chinese herbs based on Q-markers: Anticancer efficacy of Astragali radix as a case

根(腹足类) 临床疗效 计算生物学 中医药 药理学 传统医学 计算机科学 医学 生物 内科学 植物 病理 替代医学
作者
Yue Ren,Fengfeng Gao,Beiyan Li,Anlei Yuan,Lulu Zheng,Yanling Zhang
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:102: 154155-154155 被引量:11
标识
DOI:10.1016/j.phymed.2022.154155
摘要

As a "multi-components and multi-efficacy" complex system, traditional Chinese herbs are universally distributed and applied in treating clinical diseases. However, the efficacy deviation and ambiguous clinical location are affected by different effects and content of components caused by uncertain factors in the production process. It further restricts resource allocation and clinical medication and hinders modernization and globalization. In this study, a precise efficacy determination strategy was innovatively proposed, aiming to quantitatively predict the efficacy of herbs and obtain precise medicinal materials. Quality-markers (Q-markers) characterizing the efficacy are conducive to achieving precise efficacy determination.With the anticancer efficacy of Astragali radix (AR) as a case, the present study was designed to establish a methodology for precise efficacy determination based on Q-markers characterizing specific efficacy.Guided by the basic principles of Q-markers, the potential Q-markers characterizing the anticancer efficacy of AR were screened through molecular simulation and network pharmacology. The activity of Q-markers was evaluated on MDA-MB-231 cells, and the content of Q-markers was determined by HPLC. A quantitative efficacy prediction model of the relationship between the influencing factors and anticancer efficacy was further constructed through the effect-constituents index (ECI) and machine learning and verified by biotechnology, which can be directly applied to predict the efficacy in numerous samples.Astragaloside I, astragaloside II, and astragaloside III inhibited the proliferation of MDA-MB-231 cells and were successfully quantified in AR samples, reflecting the effectiveness and measurability of Q-markers. Gradient Boost Regression showed the best performance in the quantitative efficacy prediction model with EVtest= 0.815, R2test= 0.802. The results of precise efficacy determination indicated that 1-2-3 (Wuzhai, Shanxi, two years, C segment) sample performed best in 54 batches of AR samples with biased anticancer efficacy. Furthermore, AR samples with higher ECI had higher anticancer efficacy and vice versa.The precise efficacy determination strategy established in the present study is reliable and proved in the AR case, which is expected to support resource allocation optimization, efficacy stability improvement, and precise clinical medication achievement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jyy应助江月年采纳,获得10
3秒前
3秒前
lucca发布了新的文献求助10
3秒前
懦弱的含芙完成签到,获得积分20
3秒前
景穆完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
7秒前
爱因斯坦发布了新的文献求助10
7秒前
7秒前
zake完成签到,获得积分10
9秒前
10秒前
Ava应助拔丝香芋采纳,获得10
11秒前
风吹草动玉米粒完成签到,获得积分10
14秒前
14秒前
852应助时尚的青丝采纳,获得10
14秒前
千寻完成签到 ,获得积分10
16秒前
姜水完成签到,获得积分10
22秒前
24秒前
24秒前
25秒前
26秒前
化白完成签到,获得积分10
26秒前
Random发布了新的文献求助10
26秒前
星辰大海应助武雨寒采纳,获得10
27秒前
王予量发布了新的文献求助10
27秒前
无花果应助戈惜采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
28秒前
今后应助科研通管家采纳,获得10
28秒前
aldehyde应助科研通管家采纳,获得10
28秒前
aldehyde应助科研通管家采纳,获得50
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
CAOHOU应助科研通管家采纳,获得10
28秒前
orixero应助科研通管家采纳,获得10
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
Hello应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966989
求助须知:如何正确求助?哪些是违规求助? 3512429
关于积分的说明 11163148
捐赠科研通 3247241
什么是DOI,文献DOI怎么找? 1793778
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432