Two-dimensional phase lag index image representation of electroencephalography for automated recognition of driver fatigue using convolutional neural network

卷积神经网络 计算机科学 模式识别(心理学) 人工智能 脑电图 特征提取 接收机工作特性 特征(语言学) 深度学习 频道(广播) 机器学习 心理学 语言学 哲学 精神科 计算机网络
作者
Jichi Chen,Shijie Wang,Enqiu He,Hong Wang,Lin Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:191: 116339-116339 被引量:17
标识
DOI:10.1016/j.eswa.2021.116339
摘要

Driving in fatigue state will increase the occurrence probability of related traffic accidents and cause severe economic and societal problems. To tackle the issue, a deep learning approach is proposed for the automated recognition of driver fatigue using electroencephalography (EEG) signals obtained from real driving. The methodology here proposed consists of converting the multi-channel EEG recording into functional brain network (FBN) adjacency matrices based on phase lag index (PLI) and feeding them into various convolutional neural networks (CNN) as input. These CNN models with convolutional layer, rectifier linear activation unit (ReLU), pooling layer and fully connected layer are designed to extract hidden features from images representing FBN adjacency matrices and then to achieve the two-ways classification task. The experimental results indicate that the highest classification accuracy of 95.4 ± 2.0%, highest sensitivity of 93.9 ± 3.1%, highest precision of 95.5 ± 2.4%, highest F1 score of 94.7 ± 2.0% and highest value of area under the receiver operating curve (AUC-ROC = 0.9953) are achieved using Model 4 based on PLI adjacency matrices as input with the 10-fold cross validation strategy. Indeed, all the CNN models considered in this research achieved accuracy higher than 94.40%. It is hence concluded that the proposed CNN models have the ability to self-learn and pick up more distinguishable features from the input data without a separate feature extraction or feature selection procedure. The experimental results also confirmed the effectiveness of the combination of FBN and CNN for the recognition of driver fatigue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luckype完成签到,获得积分20
1秒前
2秒前
3秒前
LDDD完成签到,获得积分10
4秒前
mafukairi发布了新的文献求助10
4秒前
5秒前
5秒前
赘婿应助meng采纳,获得10
7秒前
科研通AI2S应助浮流少年采纳,获得10
7秒前
Owen应助mmol采纳,获得10
7秒前
大圣完成签到,获得积分10
8秒前
8秒前
8秒前
carly关注了科研通微信公众号
9秒前
wb发布了新的文献求助30
9秒前
所所应助luckype采纳,获得10
9秒前
11秒前
77完成签到 ,获得积分10
11秒前
12秒前
777hhh完成签到,获得积分20
12秒前
13秒前
14秒前
小盘子完成签到,获得积分10
14秒前
16秒前
小灰灰完成签到,获得积分10
16秒前
逻辑猫发布了新的文献求助20
16秒前
17秒前
kk发布了新的文献求助10
17秒前
18秒前
maox1aoxin应助mafukairi采纳,获得30
18秒前
19秒前
20秒前
carly发布了新的文献求助10
20秒前
kjding发布了新的文献求助10
20秒前
22秒前
SSY发布了新的文献求助10
23秒前
23秒前
25秒前
hhan发布了新的文献求助10
27秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133336
求助须知:如何正确求助?哪些是违规求助? 2784459
关于积分的说明 7766779
捐赠科研通 2439644
什么是DOI,文献DOI怎么找? 1296912
科研通“疑难数据库(出版商)”最低求助积分说明 624809
版权声明 600771