Two-dimensional phase lag index image representation of electroencephalography for automated recognition of driver fatigue using convolutional neural network

卷积神经网络 计算机科学 模式识别(心理学) 人工智能 脑电图 特征提取 接收机工作特性 特征(语言学) 深度学习 频道(广播) 机器学习 心理学 计算机网络 语言学 精神科 哲学
作者
Jichi Chen,Shijie Wang,Enqiu He,Hong Wang,Lin Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:191: 116339-116339 被引量:23
标识
DOI:10.1016/j.eswa.2021.116339
摘要

Driving in fatigue state will increase the occurrence probability of related traffic accidents and cause severe economic and societal problems. To tackle the issue, a deep learning approach is proposed for the automated recognition of driver fatigue using electroencephalography (EEG) signals obtained from real driving. The methodology here proposed consists of converting the multi-channel EEG recording into functional brain network (FBN) adjacency matrices based on phase lag index (PLI) and feeding them into various convolutional neural networks (CNN) as input. These CNN models with convolutional layer, rectifier linear activation unit (ReLU), pooling layer and fully connected layer are designed to extract hidden features from images representing FBN adjacency matrices and then to achieve the two-ways classification task. The experimental results indicate that the highest classification accuracy of 95.4 ± 2.0%, highest sensitivity of 93.9 ± 3.1%, highest precision of 95.5 ± 2.4%, highest F1 score of 94.7 ± 2.0% and highest value of area under the receiver operating curve (AUC-ROC = 0.9953) are achieved using Model 4 based on PLI adjacency matrices as input with the 10-fold cross validation strategy. Indeed, all the CNN models considered in this research achieved accuracy higher than 94.40%. It is hence concluded that the proposed CNN models have the ability to self-learn and pick up more distinguishable features from the input data without a separate feature extraction or feature selection procedure. The experimental results also confirmed the effectiveness of the combination of FBN and CNN for the recognition of driver fatigue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琉璃发布了新的文献求助10
刚刚
叶雨思空完成签到 ,获得积分10
1秒前
脑洞疼应助栗子醚纳米采纳,获得10
1秒前
斯文败类应助沉默红牛采纳,获得10
2秒前
Jere发布了新的文献求助20
3秒前
shi完成签到,获得积分10
3秒前
Roger发布了新的文献求助10
3秒前
研友_VZG7GZ应助茶米采纳,获得10
6秒前
sleep举报刘小文求助涉嫌违规
10秒前
Hello应助隐形的凡阳采纳,获得10
11秒前
楠楠完成签到 ,获得积分10
11秒前
淡定星星完成签到,获得积分10
12秒前
小陈要发SCI完成签到 ,获得积分10
16秒前
LuckyM发布了新的文献求助10
17秒前
17秒前
lige完成签到 ,获得积分10
18秒前
19秒前
Ting完成签到 ,获得积分10
19秒前
保卫时光完成签到,获得积分10
20秒前
Roger发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
wjsAljl完成签到,获得积分10
23秒前
满意的含灵完成签到,获得积分10
25秒前
茶米发布了新的文献求助10
27秒前
夏天的风发布了新的文献求助10
27秒前
小二郎应助超帅的天曼采纳,获得10
28秒前
www完成签到 ,获得积分10
32秒前
35秒前
Biohacking完成签到,获得积分10
36秒前
高高发布了新的文献求助10
38秒前
耶斯发布了新的文献求助10
38秒前
科研蝗虫发布了新的文献求助10
39秒前
41秒前
困困包发布了新的文献求助10
42秒前
华仔应助eno1009采纳,获得20
42秒前
Lucas应助jgpiao采纳,获得10
43秒前
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454