First Principles Investigation of Grain Boundary Effects in Perovskite-Type Lithium Lanthanum Titanate Solid Electrolyte

晶界 离子电导率 材料科学 锂(药物) 离子键合 电解质 化学物理 工程物理 微观结构 离子 冶金 化学 物理化学 物理 心理学 有机化学 电极 精神科
作者
Patrick Conlin,Kyeongjae Cho
出处
期刊:Meeting abstracts 卷期号:MA2019-01 (4): 483-483
标识
DOI:10.1149/ma2019-01/4/483
摘要

Lithium lanthanum titanate (LLTO) is considered a particularly promising candidate for use as an electrolyte in all-solid-state lithium ion batteries due its good electrochemical stability and high ionic conductivity. However, measured values for the ionic conductivity of LLTO fall far below theoretical predictions, an incongruity which has been attributed to the presence of grain boundaries. Furthermore, recent experimental work has shown that lithium dendrite growth occurs along the grain boundaries in LLTO. While experimental studies have been able to reveal the detailed microstructure of polycrystalline LLTO, but little effort has been made to identify the fundamental mechanisms at work within the grain boundaries which lead to to suppressed ionic conductivity and Li dendrite growth. Using ab-initio calculations, we examine the electronic character of LLTO grain boundaries and investigate the impact of the defect states on ion transport and dendrite formation. Based on a fundamental understanding of the atomic and electronic character of LLTO grain boundaries, material design approaches are proposed to mitigate the impact of grain boundary behavior and improve the viability of LLTO as a practical solid electrolyte. This work was supported by the International Energy Joint R&D Program (No. 20168510011350) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Knowledge Economy, Korean government. This work is also supported by the L&F Co.’s World Class 300 Project of the Korea Institute of Advancement of Technology (KIAT) funded by the Ministry of Trade, industry and Energy (No.S2483103).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LLL完成签到,获得积分10
2秒前
诚心醉柳发布了新的文献求助10
3秒前
科研通AI6应助我我我采纳,获得10
4秒前
mn904yy完成签到,获得积分10
4秒前
6秒前
番茄豆丁完成签到 ,获得积分10
7秒前
7秒前
领导范儿应助www采纳,获得10
8秒前
9秒前
9秒前
小栖是菇凉完成签到,获得积分10
9秒前
HEHE完成签到,获得积分20
9秒前
CipherSage应助壮观夜南采纳,获得10
9秒前
9秒前
10秒前
10秒前
科研之路发布了新的文献求助10
10秒前
糯米糍发布了新的文献求助30
12秒前
桐桐应助wencan采纳,获得10
12秒前
14秒前
14秒前
大模型应助莫茹采纳,获得10
15秒前
lcc发布了新的文献求助10
16秒前
Abl完成签到 ,获得积分10
16秒前
16秒前
18秒前
18秒前
18秒前
SoyLucia发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
深情安青应助何raven采纳,获得10
19秒前
斯文的慕儿完成签到 ,获得积分10
19秒前
12345完成签到,获得积分10
19秒前
LKLK完成签到 ,获得积分20
21秒前
术士1000发布了新的文献求助10
21秒前
科研通AI2S应助wwq采纳,获得30
23秒前
23秒前
英俊的铭应助xyx采纳,获得10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680471
求助须知:如何正确求助?哪些是违规求助? 4999474
关于积分的说明 15173146
捐赠科研通 4840392
什么是DOI,文献DOI怎么找? 2594044
邀请新用户注册赠送积分活动 1547083
关于科研通互助平台的介绍 1505062