Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage

材料科学 阳极 纺纱 阴极 纤维 储能 复合数 纳米纤维 电池(电) 纳米技术 数码产品 电极 复合材料 电气工程 工程类 物理化学 物理 功率(物理) 化学 量子力学
作者
Tingting Gao,Guangyuan Yan,Xin Yang,Qing Yan,Yankuan Tian,Jianwei Song,Faxue Li,Xueli Wang,Jianyong Yu,Yiju Li,Shaojun Guo
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:71: 192-200 被引量:66
标识
DOI:10.1016/j.jechem.2022.02.040
摘要

High-performance flexible one-dimensional (1D) electrochemical energy storage devices are crucial for the applications of wearable electronics. Although much progress on various 1D energy storage devices has been made, challenges involving fabrication cost, scalability, and efficiency remain. Herein, a high-performance flexible all-fiber zinc-ion battery (ZIB) is fabricated using a low-cost, scalable, and efficient continuous wet-spinning method. Viscous composite inks containing cellulose nanofibers/carbon nanotubes (CNFs/CNTs) binary composite network and either manganese dioxide nanowires (MnO2 NWs) or commercial Zn powders are utilized to spinning fiber cathodes and anodes, respectively. MnO2 NWs and Zn powders are uniformly dispersed in the interpenetrated CNFs/CNTs fibrous network, leading to homogenous composite inks with an ideal shear-thinning property. The obtained fiber electrodes demonstrate favorable uniformity and flexibility. Benefiting from the well-designed electrodes, the assembled flexible fiber-shaped ZIB delivers a high specific capacity of 281.5 mAh g−1 at 0.25 A g−1 and displays excellent cycling stability over 400 cycles. Moreover, the wet-spun fiber-shaped ZIBs achieve ultrahigh gravimetric and volumetric energy densities of 47.3 Wh kg−1 and 131.3 mWh cm−3, respectively, based on both cathode and anode and maintain favorable stability even after 4000 bending cycles. This work offers a new concept design of 1D flexible ZIBs that can be potentially incorporated into commercial textiles for wearable and portable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
在水一方应助罗小黑采纳,获得10
3秒前
利多可欣发布了新的文献求助30
4秒前
houbinghua发布了新的文献求助10
4秒前
Mse发布了新的文献求助10
4秒前
银月葱头发布了新的文献求助10
5秒前
7秒前
星光完成签到,获得积分10
7秒前
自信乐菱发布了新的文献求助50
8秒前
暮夕梧桐完成签到,获得积分10
8秒前
丘比特应助ZH的天方夜谭采纳,获得10
10秒前
漂亮凌旋完成签到,获得积分10
10秒前
寂寞的小土鸡完成签到,获得积分10
10秒前
何hehe完成签到 ,获得积分10
10秒前
11秒前
12秒前
Hello应助asd采纳,获得10
14秒前
Soxiar发布了新的文献求助20
14秒前
LSF完成签到,获得积分10
15秒前
淡然的水蓝完成签到 ,获得积分10
15秒前
yar应助科研通管家采纳,获得10
15秒前
sutharsons应助科研通管家采纳,获得30
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
嗯哼应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得30
16秒前
sutharsons应助科研通管家采纳,获得100
16秒前
yar应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
垚乐应助科研通管家采纳,获得10
16秒前
槿落完成签到,获得积分20
16秒前
等待的问夏完成签到 ,获得积分10
17秒前
sai完成签到,获得积分10
18秒前
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312100
求助须知:如何正确求助?哪些是违规求助? 2944743
关于积分的说明 8521216
捐赠科研通 2620426
什么是DOI,文献DOI怎么找? 1432831
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650106