Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage

材料科学 阳极 纺纱 阴极 纤维 储能 复合数 纳米纤维 电池(电) 纳米技术 数码产品 电极 复合材料 电气工程 工程类 物理化学 物理 功率(物理) 化学 量子力学
作者
Tingting Gao,Guangyuan Yan,Xin Yang,Qing Yan,Yankuan Tian,Jianwei Song,Faxue Li,Xueli Wang,Jianyong Yu,Yiju Li,Shaojun Guo
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:71: 192-200 被引量:96
标识
DOI:10.1016/j.jechem.2022.02.040
摘要

High-performance flexible one-dimensional (1D) electrochemical energy storage devices are crucial for the applications of wearable electronics. Although much progress on various 1D energy storage devices has been made, challenges involving fabrication cost, scalability, and efficiency remain. Herein, a high-performance flexible all-fiber zinc-ion battery (ZIB) is fabricated using a low-cost, scalable, and efficient continuous wet-spinning method. Viscous composite inks containing cellulose nanofibers/carbon nanotubes (CNFs/CNTs) binary composite network and either manganese dioxide nanowires (MnO2 NWs) or commercial Zn powders are utilized to spinning fiber cathodes and anodes, respectively. MnO2 NWs and Zn powders are uniformly dispersed in the interpenetrated CNFs/CNTs fibrous network, leading to homogenous composite inks with an ideal shear-thinning property. The obtained fiber electrodes demonstrate favorable uniformity and flexibility. Benefiting from the well-designed electrodes, the assembled flexible fiber-shaped ZIB delivers a high specific capacity of 281.5 mAh g−1 at 0.25 A g−1 and displays excellent cycling stability over 400 cycles. Moreover, the wet-spun fiber-shaped ZIBs achieve ultrahigh gravimetric and volumetric energy densities of 47.3 Wh kg−1 and 131.3 mWh cm−3, respectively, based on both cathode and anode and maintain favorable stability even after 4000 bending cycles. This work offers a new concept design of 1D flexible ZIBs that can be potentially incorporated into commercial textiles for wearable and portable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助HCT采纳,获得10
刚刚
志小天发布了新的文献求助10
刚刚
刚刚
充电宝应助Utopia采纳,获得30
刚刚
Lucas应助黄油小花饼干采纳,获得30
1秒前
leslie发布了新的文献求助10
2秒前
Sun_Y完成签到,获得积分10
2秒前
NexusExplorer应助辛勤的映波采纳,获得10
2秒前
2秒前
BowieHuang应助LEEGAN采纳,获得10
2秒前
Lucas应助LEEGAN采纳,获得10
2秒前
砂糖发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
乖不如野发布了新的文献求助10
4秒前
伶俐碧萱完成签到 ,获得积分10
5秒前
青木瓜子完成签到 ,获得积分20
5秒前
5秒前
tree发布了新的文献求助10
6秒前
jiebai发布了新的文献求助10
6秒前
6秒前
hqy完成签到,获得积分10
6秒前
cocopan发布了新的文献求助10
7秒前
blenda发布了新的文献求助20
8秒前
万物可爱完成签到 ,获得积分10
9秒前
爆米花应助LHW采纳,获得10
9秒前
9秒前
嘻嘻哈哈完成签到 ,获得积分10
9秒前
不弱小妖完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
somous完成签到,获得积分10
10秒前
Msong发布了新的文献求助10
10秒前
RB完成签到,获得积分10
10秒前
认真黑猫发布了新的文献求助20
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809