亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FB Dictionary Based SSBL-EM and Its Application for Multi-Class SSVEP Classification Using Eight-Channel EEG Signals

计算机科学 离散余弦变换 信号重构 人工智能 信号处理 数据压缩 模式识别(心理学) 脑-机接口 压缩传感 语音识别 脑电图 数字信号处理 心理学 精神科 计算机硬件 图像(数学)
作者
Vipin Gupta,Ram Bilas Pachori
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:6
标识
DOI:10.1109/tim.2022.3150848
摘要

Many applications of signal processing require efficient reconstruction and economical processing of a signal. A classical approach for efficient reconstruction and economical processing of signal is compression. In recent studies, compressed sensing (CS) is an emerging field for compression and reconstruction. Moreover, CS is well-known for energy-efficient signal compression. However, most CS algorithms do not provide efficient reconstruction of physiological signals, such as electroencephalogram (EEG) and electrocardiogram (ECG). Efficient reconstruction is not possible due to non-stationary and non-sparsity characteristics of these signals. On the other hand, processing of these multichannel physiological signals is also time-consuming since the processing time is directly proportional to the number of channels. Hence, we have proposed a Fourier–Bessel (FB) dictionary-based spatiotemporal sparse Bayesian learning (SSBL) algorithm with expectation–maximization (EM) method for efficient reconstruction of multichannel physiological signals. This proposed method is based on the existing SSBL-EM method in which the authors used discrete cosine transform (DCT) dictionary for efficient reconstruction. In our work, we have used FB dictionary instead of DCT dictionary as the Bessel functions have non-stationary characteristic and provide good compression for signals such as EEG. The proposed method has been tested on two different databases for steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) classification using multichannel EEG signals and provides 100% classification accuracy with 50% compression and 2-s time duration using the first database. Classification has been performed using L1-regularized multiway canonical correlation analysis (L1-RMCCA) method. The performance of the proposed method has been compared with the DCT-dictionary-based SSBL-EM method. The classification accuracy result makes this proposed method more beneficial for uninterrupted wireless telemonitoring of multichannel EEG signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
申腾达发布了新的文献求助10
11秒前
WWW发布了新的文献求助10
15秒前
WWW完成签到,获得积分10
27秒前
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
开拖拉机的芍药完成签到 ,获得积分10
39秒前
ROMANTIC完成签到 ,获得积分10
44秒前
45秒前
Lucas应助开朗灵萱采纳,获得10
48秒前
YUE66完成签到,获得积分10
55秒前
57秒前
开朗灵萱发布了新的文献求助10
1分钟前
情怀应助奋斗的马里奥采纳,获得10
1分钟前
传奇3应助开朗灵萱采纳,获得10
1分钟前
Richard完成签到,获得积分10
1分钟前
monica完成签到 ,获得积分10
1分钟前
Jessica完成签到,获得积分10
1分钟前
orixero应助飞常爱你哦采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
浮岫发布了新的文献求助10
2分钟前
浮岫完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
rebeycca发布了新的文献求助10
2分钟前
奋斗的马里奥完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
lei完成签到,获得积分20
3分钟前
跳跃紫真完成签到,获得积分10
3分钟前
CodeCraft应助lei采纳,获得10
3分钟前
大玉124完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439