FB Dictionary Based SSBL-EM and Its Application for Multi-Class SSVEP Classification Using Eight-Channel EEG Signals

计算机科学 离散余弦变换 信号重构 人工智能 信号处理 数据压缩 模式识别(心理学) 脑-机接口 压缩传感 语音识别 脑电图 数字信号处理 心理学 精神科 计算机硬件 图像(数学)
作者
Vipin Gupta,Ram Bilas Pachori
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:6
标识
DOI:10.1109/tim.2022.3150848
摘要

Many applications of signal processing require efficient reconstruction and economical processing of a signal. A classical approach for efficient reconstruction and economical processing of signal is compression. In recent studies, compressed sensing (CS) is an emerging field for compression and reconstruction. Moreover, CS is well-known for energy-efficient signal compression. However, most CS algorithms do not provide efficient reconstruction of physiological signals, such as electroencephalogram (EEG) and electrocardiogram (ECG). Efficient reconstruction is not possible due to non-stationary and non-sparsity characteristics of these signals. On the other hand, processing of these multichannel physiological signals is also time-consuming since the processing time is directly proportional to the number of channels. Hence, we have proposed a Fourier–Bessel (FB) dictionary-based spatiotemporal sparse Bayesian learning (SSBL) algorithm with expectation–maximization (EM) method for efficient reconstruction of multichannel physiological signals. This proposed method is based on the existing SSBL-EM method in which the authors used discrete cosine transform (DCT) dictionary for efficient reconstruction. In our work, we have used FB dictionary instead of DCT dictionary as the Bessel functions have non-stationary characteristic and provide good compression for signals such as EEG. The proposed method has been tested on two different databases for steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) classification using multichannel EEG signals and provides 100% classification accuracy with 50% compression and 2-s time duration using the first database. Classification has been performed using L1-regularized multiway canonical correlation analysis (L1-RMCCA) method. The performance of the proposed method has been compared with the DCT-dictionary-based SSBL-EM method. The classification accuracy result makes this proposed method more beneficial for uninterrupted wireless telemonitoring of multichannel EEG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼灵寒完成签到,获得积分10
刚刚
刚刚
ting5260完成签到,获得积分10
1秒前
yao完成签到,获得积分10
1秒前
!!完成签到,获得积分10
1秒前
neeeru完成签到,获得积分10
1秒前
2秒前
2秒前
丘比特应助大大怪采纳,获得10
2秒前
yydsyk完成签到,获得积分10
2秒前
YixiaoWang发布了新的文献求助10
3秒前
小刷子完成签到,获得积分10
3秒前
Aom发布了新的文献求助20
4秒前
可宝想当富婆完成签到 ,获得积分10
4秒前
火星上的天思完成签到,获得积分10
4秒前
4秒前
LIN完成签到,获得积分10
4秒前
JamesPei应助缓慢易云采纳,获得10
5秒前
CodeCraft应助Laraine采纳,获得10
6秒前
6秒前
卉酱完成签到,获得积分10
6秒前
Kate完成签到,获得积分10
6秒前
林夏发布了新的文献求助10
6秒前
小思雅发布了新的文献求助10
6秒前
ZJCGD发布了新的文献求助10
7秒前
踹脸大妈完成签到,获得积分10
7秒前
佳仪完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
Akim应助哎呀呀采纳,获得10
10秒前
sljzhangbiao11完成签到,获得积分10
11秒前
宋宋关注了科研通微信公众号
11秒前
JamesPei应助12334采纳,获得10
11秒前
11秒前
zzzzz给zzzzz的求助进行了留言
11秒前
梦在远方完成签到 ,获得积分10
11秒前
12秒前
烟花应助牛牛采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582