Multiparametric MRI-based radiomics model to predict pelvic lymph node invasion for patients with prostate cancer

医学 介入放射学 前列腺癌 淋巴结 多参数磁共振成像 放射科 磁共振成像 超声波 神经组阅片室 无线电技术 癌症 内科学 神经学 精神科
作者
Haoxin Zheng,Qi Miao,Yongkai Liu,Sohrab Afshari Mirak,Melina Hosseiny,Fabien Scalzo,Steven S. Raman,Kyunghyun Sung
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (8): 5688-5699 被引量:23
标识
DOI:10.1007/s00330-022-08625-6
摘要

To identify which patient with prostate cancer (PCa) could safely avoid extended pelvic lymph node dissection (ePLND) by predicting lymph node invasion (LNI), via a radiomics-based machine learning approach.An integrative radiomics model (IRM) was proposed to predict LNI, confirmed by the histopathologic examination, integrating radiomics features, extracted from prostatic index lesion regions on MRI images, and clinical features via SVM. The study cohort comprised 244 PCa patients with MRI and followed by radical prostatectomy (RP) and ePLND within 6 months between 2010 and 2019. The proposed IRM was trained in training/validation set and evaluated in an internal independent testing set. The model's performance was measured by area under the curve (AUC), sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). AUCs were compared via Delong test with 95% confidence interval (CI), and the rest measurements were compared via chi-squared test or Fisher's exact test.Overall, 17 (10.6%) and 14 (16.7%) patients with LNI were included in training/validation set and testing set, respectively. Shape and first-order radiomics features showed usefulness in building the IRM. The proposed IRM achieved an AUC of 0.915 (95% CI: 0.846-0.984) in the testing set, superior to pre-existing nomograms whose AUCs were from 0.698 to 0.724 (p < 0.05).The proposed IRM could be potentially feasible to predict the risk of having LNI for patients with PCa. With the improved predictability, it could be utilized to assess which patients with PCa could safely avoid ePLND, thus reduce the number of unnecessary ePLND.• The combination of MRI-based radiomics features with clinical information improved the prediction of lymph node invasion, compared with the model using only radiomics features or clinical features. • With improved prediction performance on predicting lymph node invasion, the number of extended pelvic lymph node dissection (ePLND) could be reduced by the proposed integrative radiomics model (IRM), compared with the existing nomograms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助曾馨慧采纳,获得10
刚刚
张辣辣完成签到,获得积分10
刚刚
shilong.yang发布了新的文献求助10
刚刚
王博士完成签到,获得积分10
刚刚
刚刚
1秒前
nana发布了新的文献求助10
1秒前
老木虫发布了新的文献求助10
1秒前
zaixianqiuzu发布了新的文献求助10
2秒前
3秒前
xiao完成签到,获得积分10
3秒前
3秒前
3秒前
Estelle发布了新的文献求助10
3秒前
隐形曼青应助123采纳,获得10
3秒前
5秒前
CipherSage应助LuoJiajun采纳,获得10
5秒前
5秒前
6秒前
Ava应助凹凸先森采纳,获得10
6秒前
大娱乐家发布了新的文献求助10
6秒前
7秒前
虚拟的眼神完成签到,获得积分10
7秒前
8秒前
冯昊发布了新的文献求助10
9秒前
9秒前
伶俐楷瑞发布了新的文献求助10
10秒前
10秒前
Clam完成签到,获得积分20
11秒前
靠奶茶续命的一一完成签到,获得积分20
11秒前
12秒前
曾馨慧发布了新的文献求助10
12秒前
13秒前
冰阔落发布了新的文献求助10
14秒前
十三完成签到,获得积分10
14秒前
14秒前
jerryzhu发布了新的文献求助10
14秒前
mmddlj发布了新的文献求助10
14秒前
15秒前
zzz完成签到,获得积分10
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410884
求助须知:如何正确求助?哪些是违规求助? 3014427
关于积分的说明 8863234
捐赠科研通 2701774
什么是DOI,文献DOI怎么找? 1481273
科研通“疑难数据库(出版商)”最低求助积分说明 684760
邀请新用户注册赠送积分活动 679281