摘要
Objectives To determine whether leukocyte-poor platelet-rich plasma (Lp-PRP) reduced retear rates, reduced fatty infiltration, and improved functional outcomes in patients with degenerative moderate-to-large rotator cuff tears. Methods This was a randomized controlled study at a single center. A consecutive series of 104 patients with moderate-to-large rotator cuff tears was enrolled and randomly allocated to a control group (double-row suture-bridge arthroscopic rotator cuff repair alone, n = 52) and a study group (double-row suture-bridge repair followed by 3 Lp-PRP injections at the tendon repair site during surgery, at days 7 and 14 after surgery, n = 52). All patients were followed up for 27.2 months (range 24-36 months), with University of California at Los Angeles (UCLA) shoulder rating scale, the Constant score, and a visual analog scale (VAS) evaluated respectively. The integrity and fatty infiltration of repaired tissue were assessed by magnetic resonance imaging using the Sugaya classification and Goutallier grade classification at 24 months after surgery. Statistical analysis was performed based on the t test, χ2 test, and the Kendall tau-b correlation coefficient. Results Four patients refused follow-up, and 11 patients had incomplete data. Eventually, a total of 89 patients were available for 24 months follow-up. The mean UCLA score increased from 14.80 ± 2.53 to 29.37 ± 2.06 in control group and from 13.74 ± 3.30 to 30.14 ± 2.32 in study group (P = .103). The mean Constant score increased from 46.56 ± 5.90 to 86.83 ± 4.94 in control group and from 44.37 ± 7.92 to 88.80 ± 4.92 in study group (P = .063). The VAS score decreased from 3.22 ± 1.24 to 0.97 ± 1.12 in control group and in 3.49 ± 1.52 to 1.16 ± 0.99 in study group (P = .41). All differences in UCLA score, Constant score, and VAS between pre- and postoperation achieved minimal clinically important differences proposed for arthroscopic rotator cuff repair. Of the 89 patients, 76 had magnetic resonance imaging performed at 24 months after surgery. The retear rate was 17.6% in study group, which was lower than that in control group (38.1%, P = .049). In addition, the Goutallier grade was found to be significant difference between groups postoperatively (Kendall tau-b –0.24, P = .03) but no significant difference preoperatively (Kendall tau-b –0.18, P = .11). There were no complications in the patients. Conclusions Our procedures involving repeated injections of Lp-PRP during surgery and at days 7 and 14, as described in this study, have positive effects on reducing retear rate and promoting Goutallier grade in patients following arthroscopic rotator cuff repair and could also provide substantial clinical outcomes that reach the minimal clinically important difference for surgical treatment. However, given the numbers available for analysis, it did not promote better clinical results when compared with the control group. Level of Evidence II, randomized controlled study. To determine whether leukocyte-poor platelet-rich plasma (Lp-PRP) reduced retear rates, reduced fatty infiltration, and improved functional outcomes in patients with degenerative moderate-to-large rotator cuff tears. This was a randomized controlled study at a single center. A consecutive series of 104 patients with moderate-to-large rotator cuff tears was enrolled and randomly allocated to a control group (double-row suture-bridge arthroscopic rotator cuff repair alone, n = 52) and a study group (double-row suture-bridge repair followed by 3 Lp-PRP injections at the tendon repair site during surgery, at days 7 and 14 after surgery, n = 52). All patients were followed up for 27.2 months (range 24-36 months), with University of California at Los Angeles (UCLA) shoulder rating scale, the Constant score, and a visual analog scale (VAS) evaluated respectively. The integrity and fatty infiltration of repaired tissue were assessed by magnetic resonance imaging using the Sugaya classification and Goutallier grade classification at 24 months after surgery. Statistical analysis was performed based on the t test, χ2 test, and the Kendall tau-b correlation coefficient. Four patients refused follow-up, and 11 patients had incomplete data. Eventually, a total of 89 patients were available for 24 months follow-up. The mean UCLA score increased from 14.80 ± 2.53 to 29.37 ± 2.06 in control group and from 13.74 ± 3.30 to 30.14 ± 2.32 in study group (P = .103). The mean Constant score increased from 46.56 ± 5.90 to 86.83 ± 4.94 in control group and from 44.37 ± 7.92 to 88.80 ± 4.92 in study group (P = .063). The VAS score decreased from 3.22 ± 1.24 to 0.97 ± 1.12 in control group and in 3.49 ± 1.52 to 1.16 ± 0.99 in study group (P = .41). All differences in UCLA score, Constant score, and VAS between pre- and postoperation achieved minimal clinically important differences proposed for arthroscopic rotator cuff repair. Of the 89 patients, 76 had magnetic resonance imaging performed at 24 months after surgery. The retear rate was 17.6% in study group, which was lower than that in control group (38.1%, P = .049). In addition, the Goutallier grade was found to be significant difference between groups postoperatively (Kendall tau-b –0.24, P = .03) but no significant difference preoperatively (Kendall tau-b –0.18, P = .11). There were no complications in the patients. Our procedures involving repeated injections of Lp-PRP during surgery and at days 7 and 14, as described in this study, have positive effects on reducing retear rate and promoting Goutallier grade in patients following arthroscopic rotator cuff repair and could also provide substantial clinical outcomes that reach the minimal clinically important difference for surgical treatment. However, given the numbers available for analysis, it did not promote better clinical results when compared with the control group.