余辉
卤化物
材料科学
发光
激子
金属
光电子学
纳米技术
离子
无机化学
物理
化学
有机化学
冶金
凝聚态物理
天文
伽马射线暴
作者
Zhishan Luo,Yejing Liu,Yulian Liu,Chen Li,Yawen Li,Qian Li,Yi Wei,Liming Zhang,Bin Xu,Xiaoyong Chang,Zewei Quan
标识
DOI:10.1002/adma.202200607
摘要
0D hybrid metal halides (0D HMHs) are considered to be promising luminescent emitters. 0D HMHs commonly exhibit self-trapped exciton (STE) emissions originating from the inorganic metal halide anion units. Exploring and utilizing the emission features of the organic cation units in 0D HMHs is highly desired to enrich their optical properties as multifunctional luminescent materials. Here, tunable emissions from organic and inorganic units are successfully achieved in triphenylsulfonium (Ph3 S+ )-based 0D HMHs. Notably, integrated afterglow and STE emissions with adjustable intensities are obtained in (Ph3 S)2 Sn1-x Tex Cl6 (x = 0-1) via the delicate combination of [SnCl6 ]2- and [TeCl6 ]2- . Moreover, such a strategy can be readily extended to develop other HMH materials with intriguing optical properties. As a demonstration, 0D (Ph3 S)2 Zn1-x Mnx Cl4 (x = 0-1) are constructed to achieve integrated afterglow and Mn2+ d-d emissions with high efficiency. Consequently, these novel 0D HMHs with colorful afterglow and STE emissions are applied in multiple anti-counterfeiting applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI