Understanding student teachers’ collaborative problem solving: Insights from an epistemic network analysis (ENA)

协作学习 编码(社会科学) 计算机科学 背景(考古学) 谈判 在线讨论 数学教育 合作学习 相互依存 社会网络分析 心理学 知识管理 教学方法 万维网 社会学 社会化媒体 生物 古生物学 社会科学
作者
Si Zhang,Qianqian Gao,Mengyu Sun,Zhihui Cai,Honghui Li,Tang Yan-ling,Qingtang Liu
出处
期刊:Computers & education [Elsevier]
卷期号:183: 104485-104485 被引量:52
标识
DOI:10.1016/j.compedu.2022.104485
摘要

Collaborative problem solving, as a key competency in the 21st century, includes both social and cognitive processes with interactive, interdependent, and periodic characteristics, so it is difficult to analyze collaborative problem solving by traditional coding and counting methods. There is a need for a new analysis approach that can capture the temporal and dynamic process of collaborative problem solving in diversity online collaborative learning context to provide some insights into online collaborative learning design. During an eight-week semester, a total of 42 student teachers participated in two online collaborative learning activities. Student teachers' discourse data were collected, and the data were coded based on a collaborative problem solving assessment model. This study used Epistemic Network Analysis (ENA) to explore the collaborative problem solving processes of student teachers in different online collaborative learning tasks. The results showed that both the high and low academic performance groups worked to maintain positive communication, but the students in the high academic performance groups negotiated on ideas while the students in the low academic performance groups focused on sharing resources/ideas. Moreover, fine-grained centroid analysis on a weekly basis showed that the high academic performance groups began by maintaining positive communication, and ended by negotiating ideas, while the low academic performance groups began by sharing resources/ideas and ended by regulating problem solving activities. Finally, the implications, limitations, and future research were discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
孙奕完成签到,获得积分10
3秒前
3秒前
俟天晴完成签到,获得积分10
3秒前
淡定问芙发布了新的文献求助30
4秒前
6秒前
Lewis完成签到,获得积分10
7秒前
orixero应助TranYan采纳,获得10
7秒前
猪猪hero发布了新的文献求助10
9秒前
10秒前
今后应助333采纳,获得10
11秒前
pu发布了新的文献求助10
12秒前
Akim应助梓榆采纳,获得10
13秒前
劼大大完成签到,获得积分10
13秒前
最优解完成签到 ,获得积分20
14秒前
14秒前
通~发布了新的文献求助10
14秒前
一段乐多完成签到,获得积分10
15秒前
15秒前
15秒前
给我找完成签到,获得积分10
16秒前
桐桐应助Yuki0616采纳,获得10
16秒前
小马甲应助鸣隐采纳,获得10
16秒前
ycd完成签到,获得积分10
17秒前
ark861023完成签到,获得积分10
17秒前
淡定问芙完成签到,获得积分10
17秒前
斯文败类应助惠惠采纳,获得10
18秒前
18秒前
Meowly完成签到,获得积分10
18秒前
19秒前
19秒前
陶醉觅夏发布了新的文献求助10
19秒前
pu完成签到,获得积分10
19秒前
小灵通完成签到,获得积分10
19秒前
给我找发布了新的文献求助10
19秒前
科研通AI2S应助LIn采纳,获得10
20秒前
gaga完成签到,获得积分10
20秒前
_Charmo完成签到,获得积分10
20秒前
Slemon完成签到,获得积分10
20秒前
谦谦姜完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794