催化作用
材料科学
电极
阳极
电解质
化学工程
纳米技术
气体扩散电极
电解
质子交换膜燃料电池
制作
化学
病理
物理化学
工程类
医学
替代医学
生物化学
作者
Shule Yu,Kui Li,Weitian Wang,Zhiqiang Xie,Lei Ding,Zhenye Kang,Jacob A. Wrubel,Zhiwen Ma,Guido Bender,Haoran Yu,Jefferey Baxter,David A. Cullen,Alex Keane,Katherine E. Ayers,Christopher Capuano,Feng‐Yuan Zhang
出处
期刊:Small
[Wiley]
日期:2022-02-17
卷期号:18 (14)
被引量:51
标识
DOI:10.1002/smll.202107745
摘要
An anode electrode concept of thin catalyst-coated liquid/gas diffusion layers (CCLGDLs), by integrating Ir catalysts with Ti thin tunable LGDLs with facile electroplating in proton exchange membrane electrolyzer cells (PEMECs), is proposed. The CCLGDL design with only 0.08 mgIr cm-2 can achieve comparative cell performances to the conventional commercial electrode design, saving ≈97% Ir catalyst and augmenting a catalyst utilization to ≈24 times. CCLGDLs with regulated patterns enable insight into how pattern morphology impacts reaction kinetics and catalyst utilization in PEMECs. A specially designed two-sided transparent reaction-visible cell assists the in situ visualization of the PEM/electrode reaction interface for the first time. Oxygen gas is observed accumulating at the reaction interface, limiting the active area and increasing the cell impedances. It is demonstrated that mass transport in PEMECs can be modified by tuning CCLGDL patterns, thus improving the catalyst activation and utilization. The CCLGDL concept promises a future electrode design strategy with a simplified fabrication process and enhanced catalyst utilization. Furthermore, the CCLGDL concept also shows great potential in being a powerful tool for in situ reaction interface research in PEMECs and other energy conversion devices with solid polymer electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI