清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning-Based UAV Path Planning for Data Collection With Integrated Collision Avoidance

计算机科学 马尔可夫决策过程 运动规划 避碰 弹道 频道(广播) 实时计算 任务(项目管理) 路径(计算) 参数化复杂度 马尔可夫过程 碰撞 数据收集 过程(计算) 分布式计算 计算机网络 人工智能 算法 机器人 计算机安全 统计 物理 数学 天文 管理 经济 操作系统
作者
Xueyuan Wang,M. Cenk Gursoy,Tugba Erpek,Yalin E. Sagduyu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (17): 16663-16676 被引量:106
标识
DOI:10.1109/jiot.2022.3153585
摘要

Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks, and determining collision-free trajectory in multi-UAV non-cooperative scenarios while collecting data from distributed Internet of Things (IoT) nodes is a challenging task. In this paper, we consider a path planning optimization problem to maximize the collected data from multiple IoT nodes under realistic constraints. The considered multi-UAV non-cooperative scenarios involve random number of other UAVs in addition to the typical UAV, and UAVs do not communicate or share information among each other. We translate the problem into a Markov decision process (MDP) with parameterized states, permissible actions, and detailed reward functions. Dueling double deep Q-network (D3QN) is proposed to learn the decision making policy for the typical UAV, without any prior knowledge of the environment (e.g., channel propagation model and locations of the obstacles) and other UAVs (e.g., their missions, movements, and policies). The proposed algorithm can adapt to various missions in various scenarios, e.g., different numbers and positions of IoT nodes, different amount of data to be collected, and different numbers and positions of other UAVs. Numerical results demonstrate that real-time navigation can be efficiently performed with high success rate, high data collection rate, and low collision rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
LRR完成签到 ,获得积分10
16秒前
蝎子莱莱xth完成签到,获得积分10
32秒前
氢锂钠钾铷铯钫完成签到,获得积分10
36秒前
Square完成签到,获得积分10
41秒前
闪闪冰绿完成签到 ,获得积分10
42秒前
wanci应助科研通管家采纳,获得10
44秒前
48秒前
切尔顿发布了新的文献求助10
53秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
Long完成签到,获得积分10
2分钟前
2分钟前
小盼虫完成签到,获得积分10
2分钟前
2分钟前
Nan语发布了新的文献求助10
2分钟前
小盼虫发布了新的文献求助10
2分钟前
hhuajw应助科研通管家采纳,获得10
2分钟前
2分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
王麒发布了新的文献求助10
3分钟前
3分钟前
深情安青应助王麒采纳,获得10
3分钟前
房天川完成签到 ,获得积分10
3分钟前
ramsey33完成签到 ,获得积分10
3分钟前
xcuwlj完成签到 ,获得积分10
3分钟前
紫熊完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
1241343948发布了新的文献求助10
4分钟前
ALMT发布了新的文献求助10
4分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
每㐬山风完成签到 ,获得积分10
4分钟前
5分钟前
LINDENG2004完成签到 ,获得积分10
5分钟前
友好初夏发布了新的文献求助10
5分钟前
完美世界应助友好初夏采纳,获得10
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
6分钟前
李健应助Marshall采纳,获得10
6分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5747093
求助须知:如何正确求助?哪些是违规求助? 5442437
关于积分的说明 15356206
捐赠科研通 4887014
什么是DOI,文献DOI怎么找? 2627592
邀请新用户注册赠送积分活动 1576008
关于科研通互助平台的介绍 1532848