Multi-target CNN-LSTM regressor for predicting urban distribution of short-term food delivery demand

背景(考古学) 计算机科学 需求预测 食物运送 服务(商务) 期限(时间) 激励 需求模式 钥匙(锁) 运筹学 推论 人工智能 业务 营销 计算机安全 需求管理 地理 经济 微观经济学 工程类 物理 量子力学 考古 宏观经济学
作者
Alessandro Crivellari,Euro Beinat,Sandor Caetano,Arnaud Seydoux,Thiago N. Cardoso
出处
期刊:Journal of Business Research [Elsevier BV]
卷期号:144: 844-853 被引量:17
标识
DOI:10.1016/j.jbusres.2022.02.039
摘要

The food delivery market has increased rapidly in the last few years, becoming a well-established reality in the business world and a common feature of urban life. Food delivery platforms provide the end-to-end services that connect restaurants with consumers, including the delivery service to those people ordering food through an online portal. A key component of these platforms is logistics, specifically the logistics of drivers. Ideally, the number of drivers operating in an urban area should be just the right number to serve the demand in that area. Since the demand is extremely dynamic in space and time, the spatial–temporal distribution of drivers remains a challenging problem, partially solved by means of variable incentives in different city areas at different times. In this context, a precise demand prediction would avoid a local lack of drivers in some areas, and an inefficient concentration of drivers in some other areas. For this reason, we propose a deep neural network-based methodology to forecast short-term food delivery demand distribution over urban areas. The study, carried out on a real-world dataset from a food delivery company, focuses on hourly demands and frequent prediction updates. The sequential modeling approach, designed to catch rapid changes and sudden variations beyond the general demand trend, is based on a multi-target CNN-LSTM regressor trained on location-specific time series. The methodology uses a single model for all service areas simultaneously, and a single one-step volume inference for every area at each time update. The results disclose a better performance over baselines (historical estimates for the same time-area) and more traditional statistical approaches (moving averages and univariate time-series forecasting), demonstrating a promising implementation potential within an online delivery platform framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wing发布了新的文献求助10
1秒前
masterwill发布了新的文献求助10
1秒前
Drmu完成签到,获得积分20
2秒前
kuiuk发布了新的文献求助20
2秒前
lxl1996发布了新的文献求助10
2秒前
顾矜应助林林采纳,获得10
3秒前
千陽完成签到 ,获得积分10
4秒前
4秒前
5秒前
阿桔发布了新的文献求助10
5秒前
7秒前
7秒前
Lmy完成签到,获得积分10
8秒前
Winky完成签到 ,获得积分10
9秒前
ChatGPT发布了新的文献求助10
9秒前
打打应助dudu不吃榴莲采纳,获得10
10秒前
Akim应助快乐小子采纳,获得10
10秒前
10秒前
wuyany33发布了新的文献求助10
10秒前
我爱写论文完成签到,获得积分10
11秒前
可爱睫毛发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
桐桐应助77采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
丸子鱼发布了新的文献求助10
16秒前
16秒前
汉堡包应助大宝君采纳,获得10
16秒前
kkk发布了新的文献求助10
18秒前
LCZz_Li发布了新的文献求助10
19秒前
20秒前
21秒前
小蘑菇应助斯可采纳,获得10
21秒前
21秒前
22秒前
小于完成签到 ,获得积分10
22秒前
深情安青应助可爱睫毛采纳,获得10
22秒前
万能图书馆应助111采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577789
求助须知:如何正确求助?哪些是违规求助? 3996987
关于积分的说明 12373945
捐赠科研通 3670961
什么是DOI,文献DOI怎么找? 2023136
邀请新用户注册赠送积分活动 1057189
科研通“疑难数据库(出版商)”最低求助积分说明 944157