Multi-target CNN-LSTM regressor for predicting urban distribution of short-term food delivery demand

背景(考古学) 计算机科学 需求预测 食物运送 服务(商务) 期限(时间) 激励 需求模式 钥匙(锁) 运筹学 推论 人工智能 业务 营销 计算机安全 需求管理 地理 经济 微观经济学 工程类 考古 量子力学 宏观经济学 物理
作者
Alessandro Crivellari,Euro Beinat,Sandor Caetano,Arnaud Seydoux,Thiago N. Cardoso
出处
期刊:Journal of Business Research [Elsevier]
卷期号:144: 844-853 被引量:17
标识
DOI:10.1016/j.jbusres.2022.02.039
摘要

The food delivery market has increased rapidly in the last few years, becoming a well-established reality in the business world and a common feature of urban life. Food delivery platforms provide the end-to-end services that connect restaurants with consumers, including the delivery service to those people ordering food through an online portal. A key component of these platforms is logistics, specifically the logistics of drivers. Ideally, the number of drivers operating in an urban area should be just the right number to serve the demand in that area. Since the demand is extremely dynamic in space and time, the spatial–temporal distribution of drivers remains a challenging problem, partially solved by means of variable incentives in different city areas at different times. In this context, a precise demand prediction would avoid a local lack of drivers in some areas, and an inefficient concentration of drivers in some other areas. For this reason, we propose a deep neural network-based methodology to forecast short-term food delivery demand distribution over urban areas. The study, carried out on a real-world dataset from a food delivery company, focuses on hourly demands and frequent prediction updates. The sequential modeling approach, designed to catch rapid changes and sudden variations beyond the general demand trend, is based on a multi-target CNN-LSTM regressor trained on location-specific time series. The methodology uses a single model for all service areas simultaneously, and a single one-step volume inference for every area at each time update. The results disclose a better performance over baselines (historical estimates for the same time-area) and more traditional statistical approaches (moving averages and univariate time-series forecasting), demonstrating a promising implementation potential within an online delivery platform framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Andy采纳,获得10
1秒前
陈棋清发布了新的文献求助10
1秒前
rui发布了新的文献求助10
1秒前
1秒前
如意代芙发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
艾妮妮发布了新的文献求助10
3秒前
苦行僧发布了新的文献求助10
3秒前
3秒前
天天快乐应助鱼维尼采纳,获得10
4秒前
犹豫的忆枫完成签到,获得积分10
4秒前
科研通AI5应助阳光稀采纳,获得10
5秒前
sanages发布了新的文献求助10
5秒前
Acvdonoe发布了新的文献求助10
5秒前
whs发布了新的文献求助20
5秒前
6秒前
平常紫易完成签到,获得积分10
6秒前
科研小民工应助CruiSk采纳,获得30
6秒前
6秒前
彭于晏应助陈棋清采纳,获得10
7秒前
7秒前
7秒前
玲儿发布了新的文献求助10
8秒前
简单山水发布了新的文献求助10
9秒前
9秒前
tomato完成签到 ,获得积分10
9秒前
10秒前
网中网关注了科研通微信公众号
11秒前
黎小乐子发布了新的文献求助10
11秒前
13秒前
13秒前
西门博超发布了新的文献求助10
14秒前
谷雨下完成签到,获得积分10
14秒前
15秒前
16秒前
ybdx应助Parotodus采纳,获得30
17秒前
可爱的坤完成签到,获得积分10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3584857
求助须知:如何正确求助?哪些是违规求助? 3153765
关于积分的说明 9498559
捐赠科研通 2856367
什么是DOI,文献DOI怎么找? 1570046
邀请新用户注册赠送积分活动 735810
科研通“疑难数据库(出版商)”最低求助积分说明 721420