亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-target CNN-LSTM regressor for predicting urban distribution of short-term food delivery demand

背景(考古学) 计算机科学 需求预测 食物运送 服务(商务) 期限(时间) 激励 需求模式 钥匙(锁) 运筹学 推论 人工智能 业务 营销 计算机安全 需求管理 地理 经济 微观经济学 工程类 物理 量子力学 考古 宏观经济学
作者
Alessandro Crivellari,Euro Beinat,Sandor Caetano,Arnaud Seydoux,Thiago N. Cardoso
出处
期刊:Journal of Business Research [Elsevier]
卷期号:144: 844-853 被引量:17
标识
DOI:10.1016/j.jbusres.2022.02.039
摘要

The food delivery market has increased rapidly in the last few years, becoming a well-established reality in the business world and a common feature of urban life. Food delivery platforms provide the end-to-end services that connect restaurants with consumers, including the delivery service to those people ordering food through an online portal. A key component of these platforms is logistics, specifically the logistics of drivers. Ideally, the number of drivers operating in an urban area should be just the right number to serve the demand in that area. Since the demand is extremely dynamic in space and time, the spatial–temporal distribution of drivers remains a challenging problem, partially solved by means of variable incentives in different city areas at different times. In this context, a precise demand prediction would avoid a local lack of drivers in some areas, and an inefficient concentration of drivers in some other areas. For this reason, we propose a deep neural network-based methodology to forecast short-term food delivery demand distribution over urban areas. The study, carried out on a real-world dataset from a food delivery company, focuses on hourly demands and frequent prediction updates. The sequential modeling approach, designed to catch rapid changes and sudden variations beyond the general demand trend, is based on a multi-target CNN-LSTM regressor trained on location-specific time series. The methodology uses a single model for all service areas simultaneously, and a single one-step volume inference for every area at each time update. The results disclose a better performance over baselines (historical estimates for the same time-area) and more traditional statistical approaches (moving averages and univariate time-series forecasting), demonstrating a promising implementation potential within an online delivery platform framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
ilk666完成签到,获得积分10
1秒前
1997SD完成签到,获得积分10
3秒前
ding应助伶俐的高烽采纳,获得10
5秒前
dolabmu完成签到 ,获得积分10
7秒前
10秒前
11秒前
Dr.YYF.发布了新的文献求助10
12秒前
CipherSage应助Zylan采纳,获得10
13秒前
HD发布了新的文献求助10
14秒前
1997SD发布了新的文献求助10
14秒前
15秒前
tdtk发布了新的文献求助10
15秒前
昆工完成签到 ,获得积分10
16秒前
19秒前
Lau发布了新的文献求助10
19秒前
yzy完成签到 ,获得积分10
21秒前
Dr.YYF.完成签到,获得积分10
21秒前
HD完成签到,获得积分10
22秒前
William_l_c完成签到,获得积分10
25秒前
Zilch驳回了cbj应助
28秒前
29秒前
HD关闭了HD文献求助
29秒前
duoduoqian发布了新的文献求助10
30秒前
孙同学完成签到 ,获得积分10
30秒前
mo完成签到 ,获得积分10
36秒前
44秒前
ask基本上完成签到 ,获得积分10
44秒前
青皮橘子应助tdtk采纳,获得10
44秒前
46秒前
duoduoqian完成签到,获得积分10
50秒前
50秒前
53秒前
1分钟前
Lau完成签到,获得积分10
1分钟前
xxx完成签到,获得积分20
1分钟前
1分钟前
1分钟前
秋老众少年完成签到 ,获得积分10
1分钟前
852应助可乐采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493698
求助须知:如何正确求助?哪些是违规求助? 4591739
关于积分的说明 14434492
捐赠科研通 4524114
什么是DOI,文献DOI怎么找? 2478624
邀请新用户注册赠送积分活动 1463650
关于科研通互助平台的介绍 1436456