Effect of Swelling in Electrolyte Polymer Binder Positive Electrode on the Characteristics of Lithium-Sulfur Batteries

环丁砜 电解质 锂(药物) 电化学 硫黄 无机化学 化学 电极 材料科学 化学工程 溶剂 有机化学 医学 物理化学 内分泌学 工程类
作者
Elena Kuzmina,Liana Dmitrieva,Dmitrii Durasov,Tatyana Prosochkina,Е. В. Карасева,В. С. Колосницын
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (1): 19-19
标识
DOI:10.1149/ma2019-02/1/19
摘要

Lithium-sulfur (Li–S) batteries attract great attention of researchers due to their high theoretical energy density (2600 W∙h∙kg -1 ) and economic efficiency compared to state-of-art lithium-ion batteries [1]. The depth of the electrochemical reduction of sulfur and the cycle life of lithium-sulfur batteries are determined by the amount of electrolyte retained in the positive electrode [2]. In turn, the amount of electrolyte in the positive electrode is determined by its porosity and the ability of binders to swell in the electrolyte. Therefore, polymer binders used in the positive electrode can significantly affect the characteristics of lithium-sulfur batteries. The aim of the work was to study the effect of the swelling of polymer binders of the positive electrode in the electrolyte solution on the characteristics of lithium-sulfur batteries. The sulfur electrodes, with the composition of 70 wt.% Sulfur (99.5%, Russia), 10 wt.% multi-walled carbon nanotubes (Sigma Aldrich) and 20 wt% binder was the object of study. Polymeric binders were PEO (ММ 4∙10 6 ), PVDF-HFP (ММ 3∙10 5 ), LA-132. Lithium-sulfur cells were assembled as described in [3]. Electrolyte was1M LiCF 3 SO 3 in sulfolane. Sulfolane is promising solvent for lithium–sulfur batteries. Electrolyte solutions based on sulfolane have high chemical and electrochemical stability [4], and moderate conductivity [5]. Sulfolane has a high flash point (166°C) [6]. Lithium trifluoromethanesulfonate was chosen as a support salt since electrolytes based on it have good scattering ability and provide lithium–sulfur cells with the smallest capacity depletion compared to electrolyte systems based on other salts [4]. Studies have shown that all investigated sulfur electrodes had good elasticity, mechanical strength and adhesion. Swelling of the electrode layer of sulfur electrodes was estimated by weight method at room temperature (23-25 °C) as follows. Pre-weighted sulfur electrodes were placed into the electrolyte solution for 48 hours. Then the sulfur electrodes were removed from the electrolyte, the excess of electrolyte was removed from the surface of the electrodes by a filter paper, and weighed. The mass of the electrolyte sorbed by the sulfur electrode was calculated as the difference in the masses of the sulfur electrodes after and before their storage into the electrolyte solution. It is established that the composition of the polymer binder has a significant effect on the swelling of the positive electrode in the electrolyte (Table). Sulfur electrodes containing PEO as a polymer binder can soak up to 2.8 µL/mAh(S). Sulfur electrodes containing PVDF-HFP and LA-132 can soak 1.5 and 1.1 µL/mAh(S), respectively. The discharge voltage profiles of lithium-sulfur cells with sulfur electrodes containing various polymeric binders differ significantly (Figure). The shape of the discharge voltage profile of lithium-sulfur cells, with the polymer binder PEO, is traditional: there are two voltage plateau: high voltage and low voltage. And in the case of polymer binders LA132 and PVDF-HFP, the discharge capacity corresponding to the end of the high-voltage stage is significantly lower than for cells with PEO binder, and the low-voltage plateau is almost indistinguishable. The difference in the swelling of sulfur electrodes containing various polymeric binders in the electrolyte solution explains the differences in the characteristics of the lithium-sulfur cells. This work was performed as part of a Government Order to Ufa Institute of Chemistry of the Russian Academy of Sciences by the Ministry of Science and Higher Education of the Russian Federation (Theme No. AAAA-A17-117011910031-7) Russia and was also financially supported by the Russian Science Foundation (project No 17-73-20115). References 1. R. Kumar, J. Liu, J-Y. Hwang, Y-K. Sun, J. Mater. Chem. A., 2018, 6 , 11582 – 11605 2. M. Hagen, P. Fanz, J. Tubke, J. Power Sources , 2014, 264, 30. 3. E. V. Karaseva, E. V. Kuzmina, D. V. Kolosnitsyn, N. V. Shakirova, L. V. Sheina, V. S. Kolosnitsyn, Acta, 2019, 296 , 1102 -1114. 4. L.V. Sheina, E.V. Kuz’mina, E.V. Karaseva, A.G. Gallyamov, T.R. Prosochkina, V.S. Kolosnitsyn, J. of App. Chem. 2018, 91 (9) , 1427-1433. 5. V.S. Kolosnitsyn, L.V. Sheina, S.E. Mochalov, Russ. J. of Electrochem., 2008, 44(5) , 575-57. 6. M. Ue, Y. Sasaki, Y. Tanaka, M. Morita Electrolytes for Lithium and Lithium-Ion Batteries, Vol. 58, Chapter 2 (Eds.: T. R. Jow, K. Xu, O. Borodin, M. Ue), Springer, New York, 2014, pp. 146-149. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
救我发布了新的文献求助10
1秒前
1秒前
1秒前
王晓雪完成签到,获得积分10
1秒前
可爱的函函应助Beni采纳,获得10
2秒前
2秒前
123完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
瓜瓜大王完成签到,获得积分10
3秒前
3秒前
小男孩完成签到,获得积分10
3秒前
Krstal完成签到 ,获得积分10
4秒前
4秒前
jiaxin关注了科研通微信公众号
4秒前
zzcherished发布了新的文献求助10
4秒前
4秒前
欣喜电脑应助冷酷小松鼠采纳,获得10
5秒前
5秒前
lucky完成签到,获得积分10
5秒前
夏静丹发布了新的文献求助10
6秒前
6秒前
6秒前
隐形曼青应助微笑枫叶采纳,获得30
7秒前
Lin17发布了新的文献求助10
7秒前
7秒前
Weiwei应助fancy采纳,获得10
7秒前
打打应助123采纳,获得10
7秒前
lgl给lgl的求助进行了留言
8秒前
九千七发布了新的文献求助10
8秒前
Ava应助酷酷的me采纳,获得10
8秒前
文艺玉兰发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
文静元霜完成签到,获得积分10
9秒前
小樱颖子完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560243
求助须知:如何正确求助?哪些是违规求助? 3986532
关于积分的说明 12342828
捐赠科研通 3657137
什么是DOI,文献DOI怎么找? 2014731
邀请新用户注册赠送积分活动 1049596
科研通“疑难数据库(出版商)”最低求助积分说明 937803