Market Making Strategy Optimization via Deep Reinforcement Learning

强化学习 计算机科学 人工智能 深度学习 股票市场 机器学习 学习分类器系统 运筹学 工程类 古生物学 生物
作者
Tianyuan Sun,Dechun Huang,Jie Yu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 9085-9093 被引量:6
标识
DOI:10.1109/access.2022.3143653
摘要

Optimization of market making strategy is a vital issue for participants in security markets. Traditional strategies are mostly designed manually, and orders are mechanically issued according to rules based on predefined market conditions. On one hand, market conditions cannot be well represented by arbitrarily defined indicators, and on the other hand, rule-based strategies cannot fully capture relations between the market conditions and strategies' actions. Therefore, it is worthwhile to investigate how to incorporate deep reinforcement learning model to address those issues. In this paper, we propose an end-to-end deep reinforcement learning market making model, i.e., Deep Reinforcement Learning Market Making. It exploits long short-term memory network to extract temporal patterns of the market directly from limit order books, and it learns state-action relations via a reinforcement learning approach. In order to control inventory risk and information asymmetry, a deep Q-network is introduced to adaptively select different action subsets and train the market making agent according to the inventory states. Experiments are conducted on a six-month Level-2 data set, including 10 stock, from Shanghai Stock Exchange in China. Our model is compared with a conventional market making baseline and a state-of-the-art market making model. Experimental results show that our approach outperforms the benchmarks over 10 stocks by at least 10.63%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的薯片完成签到,获得积分10
刚刚
啊张应助失忆的金鱼采纳,获得10
1秒前
乐乐酱完成签到,获得积分10
1秒前
爆米花应助hhhee采纳,获得10
1秒前
1秒前
CT民工完成签到,获得积分10
2秒前
ccciii完成签到,获得积分10
2秒前
coco完成签到,获得积分10
3秒前
桐桐应助怕黑的天思采纳,获得10
3秒前
4秒前
5秒前
思晗完成签到,获得积分10
5秒前
天才幸运鱼完成签到,获得积分10
5秒前
ccciii发布了新的文献求助10
5秒前
baijiayi完成签到,获得积分10
6秒前
7秒前
甜甜映菡发布了新的文献求助10
7秒前
笑点低的凝阳完成签到,获得积分10
7秒前
LILILI完成签到,获得积分10
7秒前
8秒前
8秒前
tree完成签到,获得积分10
9秒前
无魇完成签到,获得积分10
9秒前
wangjustb发布了新的文献求助10
10秒前
10秒前
研友_Lpawrn发布了新的文献求助10
11秒前
Yfvonne完成签到,获得积分10
11秒前
11秒前
12秒前
xlong发布了新的文献求助10
12秒前
背后的小白菜完成签到,获得积分10
12秒前
啦啦啦啦呼完成签到,获得积分10
12秒前
雪兔妹妹完成签到 ,获得积分10
13秒前
精明的盼雁完成签到,获得积分10
13秒前
科研通AI2S应助听雨采纳,获得10
14秒前
充电宝应助我又不乱来采纳,获得10
14秒前
四硼酸钠完成签到,获得积分10
14秒前
猪猪小弟完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311457
求助须知:如何正确求助?哪些是违规求助? 2944239
关于积分的说明 8518079
捐赠科研通 2619580
什么是DOI,文献DOI怎么找? 1432472
科研通“疑难数据库(出版商)”最低求助积分说明 664671
邀请新用户注册赠送积分活动 649869