This work investigates how the crystallographic features of additive manufactured (AM) microstructures impact the pitting corrosion process through computational simulations of phase field models. Crystallographic influence is explored by introducing orientation dependencies into the corrosion potentials and elastic constants of the model through microstructural data provided from AM 316L samples. Comparisons of evolved pit morphologies and stress responses are made to a standard homogeneous, semi-circular model to better highlight how the complexity of AM microstructures affects pit evolution and stress concentrations. The results illustrate that AM-informed modeling cases produce larger, deeper pits with numerous locations of elevated stress concentrations along the pit front.