[Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma].

随机森林 Lasso(编程语言) 接收机工作特性 支持向量机 特征选择 肝细胞癌 人工智能 决策树 无线电技术 人工神经网络 机器学习 医学 特征(语言学) 梯度升压 Boosting(机器学习) 交叉验证 计算机科学 内科学 语言学 哲学 万维网
作者
Yang Xin Yu,Chien-An Hu,X M Wang,Yuheng Fan,Mengjiao Hu,Chengbing Shi,S Hu,Minfeng Zhu,Y Zhang
出处
期刊:PubMed 被引量:2
标识
DOI:10.3760/cma.j.cn112137-20200820-02425
摘要

Objective: To explore the value of machine learning models in preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) based on dual-phase contrast-enhanced CT radiomics features. Methods: The data of 148 patients [106 males and 42 females, with an average age of (58±11) years] with HCC confirmed by pathology in the First Affiliated Hospital of Soochow University from January 2015 to May 2020 were retrospectively analyzed, including 88 cases of positive MVI and 60 cases of negative MVI. According to the ratio of 7∶3, the patients were randomly divided into the training and validation sets, respectively. The three-dimensional (3D) radiomics features of HCC in arterial phase (AP) and portal venous phase (PP) were extracted by MaZda software, and the optimal feature subset was obtained by combining three feature selection methods (FPM method) and Lasso regression. Then, six machine learning methods were used to build the prediction models. Receiver operating characteristic (ROC) curves were drawn to evaluate the prediction ability of the aforementioned models, and the area under the curve (AUC), accuracy, sensitivity and specificity were calculated. Results: Radiomics features of HCC in AP and PP were extracted by MaZda software, with 239 in each phase. There were 7 optimal features in AP and 14 optimal features in PP selected by FPM method and Lasso regression, respectively. The AUCs of decision tree, extreme gradient boosting, random forest, support vector machine (SVM), generalized linear model, and neural network based on the 7 optimal features in AP in the validation set were 0.736, 0.910, 0.913, 0.915, 0.897, 0.648, respectively. The SVM had the highest AUC in the validation set, with the accuracy, sensitivity and specificity of 95.35%, 95.83% and 94.74%, respectively. Likewise, the AUCs of machine learning models in prediction of MVI in HCC based on the 14 optimal features in PP in the validation set were 0.873, 0.876, 0.913, 0.859, 0.877, 0.834, respectively, and there were no significant differences (all P>0.05). The random forest had the highest AUC in the validation set, with the accuracy, sensitivity and specificity of 90.70%, 87.50% and 94.74%, respectively. Conclusion: Machine learning models based on dual-phase enhanced CT radiomics features can be used in preoperative prediction of MVI in HCC, particularly the SVM and random forest models have high prediction efficiency.目的: 探讨基于双期增强CT影像组学特征的机器学习模型术前预测肝细胞癌微血管侵犯(MVI)的价值。 方法: 回顾性分析2015年1月至2020年5月在苏州大学附属第一医院经病理确诊的148例[男106例,女42例,年龄(58±11)岁]肝细胞癌患者的资料,其中MVI阳性88例,MVI阴性60例。按照约7∶3的比例随机分配为训练集和验证集。利用MaZda软件提取肝细胞癌动脉期和门静脉期3D影像组学特征,采用3种特征选择方法联合(FPM法)和Lasso回归进行特征筛选,得到最优特征子集。然后用6种机器学习算法构建预测模型,采用受试者工作特征(ROC)曲线评估模型的预测能力,并计算出曲线下面积(AUC)、准确度、灵敏度和特异度。 结果: MaZda软件提取肝细胞癌动脉期和门静脉期的影像组学特征,各239个。利用FPM法和Lasso 回归进行特征筛选可分别得到7个动脉期和14个门静脉期最优特征。基于动脉期的7个最优特征构建的决策树、极端梯度提升、随机森林、支持向量机、广义线性模型和神经网络等模型预测验证集肝细胞癌MVI的AUC值分别为0.736、0.910、0.913、0.915、0.897、0.648,其中支持向量机的AUC值最高,其准确度、灵敏度和特异度分别为95.35%、95.83%和94.74%。利用门静脉期的14个最优特征构建的上述机器学习模型预测验证集肝细胞癌MVI的AUC值分别为0.873、0.876、0.913、0.859、0.877、0.834,其差异均无统计学意义(均P>0.05),其中随机森林模型的AUC值最高,其准确度、灵敏度和特异度分别为90.70%、87.50%和94.74%。 结论: 基于双期增强CT影像组学特征的机器学习模型可用于术前预测肝细胞癌微血管侵犯。其中,支持向量机和随机森林模型具有较高的预测效能。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heolmes完成签到,获得积分10
刚刚
1秒前
2秒前
满意尔安完成签到,获得积分10
2秒前
3秒前
小平应助木头采纳,获得10
4秒前
吴晨曦完成签到,获得积分10
4秒前
ZhuJY发布了新的文献求助10
4秒前
zhangle完成签到,获得积分10
5秒前
Jason完成签到,获得积分10
6秒前
加减乘除发布了新的文献求助10
7秒前
BisonHamster完成签到,获得积分10
7秒前
8秒前
木目完成签到,获得积分10
9秒前
幼稚园扛把子完成签到,获得积分20
9秒前
Orange应助电闪采纳,获得10
9秒前
董卓小蛮腰完成签到,获得积分10
9秒前
Niko完成签到,获得积分10
9秒前
370完成签到,获得积分10
10秒前
张选手十四号万岁完成签到,获得积分10
11秒前
12秒前
壮观的夏蓉完成签到,获得积分10
12秒前
ark861023完成签到,获得积分10
13秒前
13秒前
monoklatt完成签到,获得积分10
13秒前
懒羊羊完成签到 ,获得积分10
13秒前
大模型应助Feng采纳,获得10
15秒前
研友_Lmg1gZ完成签到,获得积分10
15秒前
多肉草莓不加冰完成签到,获得积分10
15秒前
华仔应助Liu采纳,获得10
15秒前
zhuxing完成签到,获得积分10
16秒前
乐观银耳汤完成签到,获得积分10
16秒前
853225598完成签到,获得积分10
16秒前
iop完成签到,获得积分20
16秒前
牧云完成签到 ,获得积分10
16秒前
dou发布了新的文献求助10
17秒前
小林完成签到,获得积分10
17秒前
宓天问完成签到,获得积分10
17秒前
吐丝麵包完成签到 ,获得积分10
18秒前
阿宝完成签到,获得积分0
18秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180102
求助须知:如何正确求助?哪些是违规求助? 2830482
关于积分的说明 7977443
捐赠科研通 2492067
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954