[Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma].

随机森林 Lasso(编程语言) 接收机工作特性 支持向量机 特征选择 肝细胞癌 人工智能 决策树 无线电技术 人工神经网络 机器学习 医学 特征(语言学) 梯度升压 Boosting(机器学习) 交叉验证 计算机科学 内科学 语言学 哲学 万维网
作者
Yang Xin Yu,Chien-An Hu,X M Wang,Yuheng Fan,Mengjiao Hu,Chengbing Shi,S Hu,Minfeng Zhu,Y Zhang
出处
期刊:PubMed 被引量:2
标识
DOI:10.3760/cma.j.cn112137-20200820-02425
摘要

Objective: To explore the value of machine learning models in preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) based on dual-phase contrast-enhanced CT radiomics features. Methods: The data of 148 patients [106 males and 42 females, with an average age of (58±11) years] with HCC confirmed by pathology in the First Affiliated Hospital of Soochow University from January 2015 to May 2020 were retrospectively analyzed, including 88 cases of positive MVI and 60 cases of negative MVI. According to the ratio of 7∶3, the patients were randomly divided into the training and validation sets, respectively. The three-dimensional (3D) radiomics features of HCC in arterial phase (AP) and portal venous phase (PP) were extracted by MaZda software, and the optimal feature subset was obtained by combining three feature selection methods (FPM method) and Lasso regression. Then, six machine learning methods were used to build the prediction models. Receiver operating characteristic (ROC) curves were drawn to evaluate the prediction ability of the aforementioned models, and the area under the curve (AUC), accuracy, sensitivity and specificity were calculated. Results: Radiomics features of HCC in AP and PP were extracted by MaZda software, with 239 in each phase. There were 7 optimal features in AP and 14 optimal features in PP selected by FPM method and Lasso regression, respectively. The AUCs of decision tree, extreme gradient boosting, random forest, support vector machine (SVM), generalized linear model, and neural network based on the 7 optimal features in AP in the validation set were 0.736, 0.910, 0.913, 0.915, 0.897, 0.648, respectively. The SVM had the highest AUC in the validation set, with the accuracy, sensitivity and specificity of 95.35%, 95.83% and 94.74%, respectively. Likewise, the AUCs of machine learning models in prediction of MVI in HCC based on the 14 optimal features in PP in the validation set were 0.873, 0.876, 0.913, 0.859, 0.877, 0.834, respectively, and there were no significant differences (all P>0.05). The random forest had the highest AUC in the validation set, with the accuracy, sensitivity and specificity of 90.70%, 87.50% and 94.74%, respectively. Conclusion: Machine learning models based on dual-phase enhanced CT radiomics features can be used in preoperative prediction of MVI in HCC, particularly the SVM and random forest models have high prediction efficiency.目的: 探讨基于双期增强CT影像组学特征的机器学习模型术前预测肝细胞癌微血管侵犯(MVI)的价值。 方法: 回顾性分析2015年1月至2020年5月在苏州大学附属第一医院经病理确诊的148例[男106例,女42例,年龄(58±11)岁]肝细胞癌患者的资料,其中MVI阳性88例,MVI阴性60例。按照约7∶3的比例随机分配为训练集和验证集。利用MaZda软件提取肝细胞癌动脉期和门静脉期3D影像组学特征,采用3种特征选择方法联合(FPM法)和Lasso回归进行特征筛选,得到最优特征子集。然后用6种机器学习算法构建预测模型,采用受试者工作特征(ROC)曲线评估模型的预测能力,并计算出曲线下面积(AUC)、准确度、灵敏度和特异度。 结果: MaZda软件提取肝细胞癌动脉期和门静脉期的影像组学特征,各239个。利用FPM法和Lasso 回归进行特征筛选可分别得到7个动脉期和14个门静脉期最优特征。基于动脉期的7个最优特征构建的决策树、极端梯度提升、随机森林、支持向量机、广义线性模型和神经网络等模型预测验证集肝细胞癌MVI的AUC值分别为0.736、0.910、0.913、0.915、0.897、0.648,其中支持向量机的AUC值最高,其准确度、灵敏度和特异度分别为95.35%、95.83%和94.74%。利用门静脉期的14个最优特征构建的上述机器学习模型预测验证集肝细胞癌MVI的AUC值分别为0.873、0.876、0.913、0.859、0.877、0.834,其差异均无统计学意义(均P>0.05),其中随机森林模型的AUC值最高,其准确度、灵敏度和特异度分别为90.70%、87.50%和94.74%。 结论: 基于双期增强CT影像组学特征的机器学习模型可用于术前预测肝细胞癌微血管侵犯。其中,支持向量机和随机森林模型具有较高的预测效能。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nxer7Z给研友_nxer7Z的求助进行了留言
刚刚
汉堡包应助忧虑的勒采纳,获得10
1秒前
yangfan完成签到,获得积分10
1秒前
1秒前
柒柒捌捌完成签到,获得积分10
2秒前
花花发布了新的文献求助10
2秒前
2秒前
sherlock发布了新的文献求助10
2秒前
3秒前
此间少年郎完成签到 ,获得积分20
3秒前
3秒前
彭于晏应助aaa采纳,获得10
3秒前
3秒前
王汉堡完成签到,获得积分10
3秒前
Ava应助小菜鸟采纳,获得10
4秒前
2E发布了新的文献求助10
4秒前
张美丽完成签到,获得积分10
4秒前
ming发布了新的文献求助10
4秒前
科研通AI5应助张棋欢采纳,获得10
4秒前
5秒前
想要礼物的艾斯米拉达完成签到,获得积分10
5秒前
贺梦妍发布了新的文献求助10
6秒前
天蓝完成签到,获得积分10
6秒前
fanfan44390发布了新的文献求助10
7秒前
CCH完成签到,获得积分10
7秒前
着急的书白完成签到,获得积分20
8秒前
tracy10完成签到,获得积分10
8秒前
zzj完成签到,获得积分10
8秒前
8秒前
敬鱼完成签到,获得积分10
9秒前
风风发布了新的文献求助10
9秒前
科目三应助00采纳,获得10
9秒前
可爱的函函应助liulangnmg采纳,获得20
10秒前
科研通AI6应助咖啡豆采纳,获得50
10秒前
老干部发布了新的文献求助10
10秒前
10秒前
敬鱼发布了新的文献求助10
12秒前
雾里完成签到,获得积分10
12秒前
CCH发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874