[Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma].

随机森林 Lasso(编程语言) 接收机工作特性 支持向量机 特征选择 肝细胞癌 人工智能 决策树 无线电技术 人工神经网络 机器学习 医学 特征(语言学) 梯度升压 Boosting(机器学习) 交叉验证 计算机科学 内科学 语言学 哲学 万维网
作者
Yang Yu,Chien-An Hu,X M Wang,Yuhong Fan,Mengjiao Hu,Cen Shi,Si-Xian Hu,Min Zhu,Y Zhang
出处
期刊:PubMed 被引量:2
标识
DOI:10.3760/cma.j.cn112137-20200820-02425
摘要

Objective: To explore the value of machine learning models in preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) based on dual-phase contrast-enhanced CT radiomics features. Methods: The data of 148 patients [106 males and 42 females, with an average age of (58±11) years] with HCC confirmed by pathology in the First Affiliated Hospital of Soochow University from January 2015 to May 2020 were retrospectively analyzed, including 88 cases of positive MVI and 60 cases of negative MVI. According to the ratio of 7∶3, the patients were randomly divided into the training and validation sets, respectively. The three-dimensional (3D) radiomics features of HCC in arterial phase (AP) and portal venous phase (PP) were extracted by MaZda software, and the optimal feature subset was obtained by combining three feature selection methods (FPM method) and Lasso regression. Then, six machine learning methods were used to build the prediction models. Receiver operating characteristic (ROC) curves were drawn to evaluate the prediction ability of the aforementioned models, and the area under the curve (AUC), accuracy, sensitivity and specificity were calculated. Results: Radiomics features of HCC in AP and PP were extracted by MaZda software, with 239 in each phase. There were 7 optimal features in AP and 14 optimal features in PP selected by FPM method and Lasso regression, respectively. The AUCs of decision tree, extreme gradient boosting, random forest, support vector machine (SVM), generalized linear model, and neural network based on the 7 optimal features in AP in the validation set were 0.736, 0.910, 0.913, 0.915, 0.897, 0.648, respectively. The SVM had the highest AUC in the validation set, with the accuracy, sensitivity and specificity of 95.35%, 95.83% and 94.74%, respectively. Likewise, the AUCs of machine learning models in prediction of MVI in HCC based on the 14 optimal features in PP in the validation set were 0.873, 0.876, 0.913, 0.859, 0.877, 0.834, respectively, and there were no significant differences (all P>0.05). The random forest had the highest AUC in the validation set, with the accuracy, sensitivity and specificity of 90.70%, 87.50% and 94.74%, respectively. Conclusion: Machine learning models based on dual-phase enhanced CT radiomics features can be used in preoperative prediction of MVI in HCC, particularly the SVM and random forest models have high prediction efficiency.目的: 探讨基于双期增强CT影像组学特征的机器学习模型术前预测肝细胞癌微血管侵犯(MVI)的价值。 方法: 回顾性分析2015年1月至2020年5月在苏州大学附属第一医院经病理确诊的148例[男106例,女42例,年龄(58±11)岁]肝细胞癌患者的资料,其中MVI阳性88例,MVI阴性60例。按照约7∶3的比例随机分配为训练集和验证集。利用MaZda软件提取肝细胞癌动脉期和门静脉期3D影像组学特征,采用3种特征选择方法联合(FPM法)和Lasso回归进行特征筛选,得到最优特征子集。然后用6种机器学习算法构建预测模型,采用受试者工作特征(ROC)曲线评估模型的预测能力,并计算出曲线下面积(AUC)、准确度、灵敏度和特异度。 结果: MaZda软件提取肝细胞癌动脉期和门静脉期的影像组学特征,各239个。利用FPM法和Lasso 回归进行特征筛选可分别得到7个动脉期和14个门静脉期最优特征。基于动脉期的7个最优特征构建的决策树、极端梯度提升、随机森林、支持向量机、广义线性模型和神经网络等模型预测验证集肝细胞癌MVI的AUC值分别为0.736、0.910、0.913、0.915、0.897、0.648,其中支持向量机的AUC值最高,其准确度、灵敏度和特异度分别为95.35%、95.83%和94.74%。利用门静脉期的14个最优特征构建的上述机器学习模型预测验证集肝细胞癌MVI的AUC值分别为0.873、0.876、0.913、0.859、0.877、0.834,其差异均无统计学意义(均P>0.05),其中随机森林模型的AUC值最高,其准确度、灵敏度和特异度分别为90.70%、87.50%和94.74%。 结论: 基于双期增强CT影像组学特征的机器学习模型可用于术前预测肝细胞癌微血管侵犯。其中,支持向量机和随机森林模型具有较高的预测效能。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助tuzhihong采纳,获得10
1秒前
1秒前
2秒前
大模型应助1221采纳,获得10
4秒前
5秒前
6秒前
开心果发布了新的文献求助10
8秒前
8秒前
完美世界应助BBC采纳,获得10
8秒前
杨晓慧完成签到 ,获得积分10
8秒前
9秒前
穆紫应助正直尔白采纳,获得20
9秒前
abol1313发布了新的文献求助10
10秒前
11秒前
蔷薇发布了新的文献求助10
12秒前
15秒前
研友_VZG7GZ应助zhaowen采纳,获得10
15秒前
16秒前
今后应助1461644768采纳,获得10
16秒前
16秒前
领导范儿应助无敌蛋娃采纳,获得10
18秒前
Li发布了新的文献求助10
18秒前
秋qiu完成签到,获得积分10
20秒前
Apple驳回了桐桐应助
20秒前
帝国超级硕士完成签到,获得积分10
21秒前
23秒前
23秒前
1221发布了新的文献求助10
23秒前
空帆船发布了新的文献求助10
23秒前
Roy发布了新的文献求助10
24秒前
26秒前
庞呵呵完成签到,获得积分10
27秒前
香蕉觅云应助长情凝丹采纳,获得10
28秒前
Magali应助ZZ采纳,获得10
28秒前
补喵发布了新的文献求助10
28秒前
粥粥完成签到,获得积分10
29秒前
支平灵发布了新的文献求助10
30秒前
猫不笑完成签到 ,获得积分10
30秒前
Always完成签到,获得积分10
30秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051899
求助须知:如何正确求助?哪些是违规求助? 2709225
关于积分的说明 7416342
捐赠科研通 2353554
什么是DOI,文献DOI怎么找? 1245569
科研通“疑难数据库(出版商)”最低求助积分说明 605799
版权声明 595870