Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis

支持向量机 随机森林 机器学习 人工智能 逻辑回归 接收机工作特性 计算机科学 骨质疏松症 人工神经网络 医学 内科学
作者
Yiting Lin,Chao-Yu Chu,Kuo‐Sheng Hung,Chi‐Hua Lu,Edward M. Bednarczyk,Hsiang‐Yin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:225: 107028-107028 被引量:11
标识
DOI:10.1016/j.cmpb.2022.107028
摘要

The specific aim of this study is to develop machine learning models as a clinical approach for personalized treatment of osteoporosis. The model performance on outcome prediction was compared between four machine learning algorithms. Retrospective, electronic clinical data for patients with suspected or confirmed osteoporosis treated at Wan Fang Hospital between 2011 to 2018 were used as inputs for building the following predictive machine learning models,i.e., artificial neural network (ANN), random forest (RF), support vector machine (SVM) and logistic regression (LR) models. The predicted outcome was defined as an increase/decrease in T-score after treatment. A genetic algorithm was employed to select relevant variables as input features for each model; the leave-one-out method was applied for model building and internal validation. The model with best performance was selected by a separate set of testing. Area under the receiver operating characteristic curve, accuracy, precision, sensitivity and F1 score were calculated to evaluate model performance. Main analysis for all the patients with subclinical or confirmed osteoporosis and subgroup analysis for the patients with confirmed osteoporosis (T score < -2.5) were carried out in this study. A genetic algorithm was employed to select 12 to 18 features from all 33 variables for the four models. No difference was found in accuracy (ANN, 71.7%; LR, 70.0%; RF, 75.0%; SVM, 66.7%), precision (ANN, 80.0%; LR, 59.3%; RF, 70.0%; SVM, 63.6%), and AUC (ANN, 0.709; LR, 0.731; RF, 0.719; SVM, 0.702) among the ANN, LR, RF and SVM models. Main analysis in performance revealed significant recall in the LR model, as compared to ANN and SVM model; while subgroup revealed significant recall in ANN model, compared to LR and SVM model. Machine learning-based models hold potential in forecasting the outcomes of treatment for osteoporosis via early initiation of first-line therapy for patients with subclinical disease; or a switch to second-line treatment for patients with a high risk of impending treatment failure. This convenient approach can assist clinicians in adjusting treatment tailored to individual patient for prevention of disease progression or ineffective therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八森木完成签到,获得积分10
1秒前
ccc完成签到,获得积分10
3秒前
一直在笑完成签到,获得积分10
4秒前
zha完成签到,获得积分10
5秒前
花开那年完成签到 ,获得积分10
6秒前
激情的含巧完成签到,获得积分10
6秒前
文艺的小刺猬完成签到 ,获得积分10
6秒前
紫沫完成签到,获得积分10
9秒前
书生完成签到,获得积分10
11秒前
只有辣椒没有油完成签到 ,获得积分10
14秒前
alexlpb完成签到,获得积分10
17秒前
忧心的若云完成签到,获得积分10
18秒前
konkon完成签到,获得积分0
18秒前
吴媛媛完成签到 ,获得积分10
18秒前
四叶草完成签到,获得积分20
18秒前
高xuewen完成签到,获得积分10
19秒前
XIEMIN完成签到,获得积分10
21秒前
纯情的远山完成签到,获得积分10
21秒前
23秒前
善良梦竹完成签到 ,获得积分10
23秒前
gy完成签到,获得积分10
25秒前
懒癌晚期完成签到,获得积分10
26秒前
阿包完成签到 ,获得积分10
28秒前
鱼0306完成签到,获得积分10
31秒前
坚定的可愁完成签到,获得积分10
31秒前
OngJi完成签到 ,获得积分10
32秒前
yiming完成签到,获得积分10
35秒前
fddfs发布了新的文献求助10
37秒前
求知的周完成签到,获得积分10
37秒前
爆米花应助Ada采纳,获得10
38秒前
Beyond095完成签到,获得积分10
39秒前
青木完成签到 ,获得积分10
40秒前
冰姗完成签到,获得积分10
43秒前
lw完成签到,获得积分10
43秒前
DLDL完成签到,获得积分10
44秒前
Lenard Guma完成签到 ,获得积分10
45秒前
何果果完成签到,获得积分10
47秒前
琉璃岁月完成签到,获得积分10
48秒前
流年完成签到 ,获得积分10
48秒前
Zhai完成签到 ,获得积分10
48秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434873
求助须知:如何正确求助?哪些是违规求助? 3032242
关于积分的说明 8944680
捐赠科研通 2720152
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689735
邀请新用户注册赠送积分活动 685882