Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis

支持向量机 随机森林 机器学习 人工智能 逻辑回归 接收机工作特性 计算机科学 骨质疏松症 人工神经网络 医学 内科学
作者
Yiting Lin,Chao-Yu Chu,Kuo‐Sheng Hung,Chi‐Hua Lu,Edward M. Bednarczyk,Hsiang‐Yin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:225: 107028-107028 被引量:11
标识
DOI:10.1016/j.cmpb.2022.107028
摘要

The specific aim of this study is to develop machine learning models as a clinical approach for personalized treatment of osteoporosis. The model performance on outcome prediction was compared between four machine learning algorithms. Retrospective, electronic clinical data for patients with suspected or confirmed osteoporosis treated at Wan Fang Hospital between 2011 to 2018 were used as inputs for building the following predictive machine learning models,i.e., artificial neural network (ANN), random forest (RF), support vector machine (SVM) and logistic regression (LR) models. The predicted outcome was defined as an increase/decrease in T-score after treatment. A genetic algorithm was employed to select relevant variables as input features for each model; the leave-one-out method was applied for model building and internal validation. The model with best performance was selected by a separate set of testing. Area under the receiver operating characteristic curve, accuracy, precision, sensitivity and F1 score were calculated to evaluate model performance. Main analysis for all the patients with subclinical or confirmed osteoporosis and subgroup analysis for the patients with confirmed osteoporosis (T score < -2.5) were carried out in this study. A genetic algorithm was employed to select 12 to 18 features from all 33 variables for the four models. No difference was found in accuracy (ANN, 71.7%; LR, 70.0%; RF, 75.0%; SVM, 66.7%), precision (ANN, 80.0%; LR, 59.3%; RF, 70.0%; SVM, 63.6%), and AUC (ANN, 0.709; LR, 0.731; RF, 0.719; SVM, 0.702) among the ANN, LR, RF and SVM models. Main analysis in performance revealed significant recall in the LR model, as compared to ANN and SVM model; while subgroup revealed significant recall in ANN model, compared to LR and SVM model. Machine learning-based models hold potential in forecasting the outcomes of treatment for osteoporosis via early initiation of first-line therapy for patients with subclinical disease; or a switch to second-line treatment for patients with a high risk of impending treatment failure. This convenient approach can assist clinicians in adjusting treatment tailored to individual patient for prevention of disease progression or ineffective therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Yolen LI采纳,获得10
2秒前
耿继生完成签到,获得积分10
3秒前
自由的刺猬完成签到,获得积分10
3秒前
3秒前
3秒前
LeuinPonsgi应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
压缩应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
高挑的不凡完成签到,获得积分10
5秒前
min17完成签到,获得积分10
6秒前
陈荣发布了新的文献求助10
7秒前
Ava应助LGuy采纳,获得10
8秒前
学术大白完成签到,获得积分10
8秒前
小台农完成签到,获得积分20
9秒前
congcong完成签到,获得积分10
10秒前
10秒前
13秒前
lsw发布了新的文献求助10
16秒前
aa发布了新的文献求助10
17秒前
Ava应助min17采纳,获得10
19秒前
比目完成签到,获得积分10
20秒前
CipherSage应助cookie采纳,获得10
21秒前
纷飞应助落后寒凡采纳,获得10
23秒前
24秒前
25秒前
Jasper应助长生采纳,获得10
26秒前
lvvyy126完成签到,获得积分10
27秒前
28秒前
h41692011完成签到 ,获得积分10
29秒前
Yolen LI发布了新的文献求助10
29秒前
别当真发布了新的文献求助10
31秒前
Yolen LI完成签到,获得积分10
35秒前
40秒前
42秒前
科研通AI2S应助夕瑶源采纳,获得10
46秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
高温高压条件下金刚石内部缺陷的形成机制及调控 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3060611
求助须知:如何正确求助?哪些是违规求助? 2716064
关于积分的说明 7447978
捐赠科研通 2361978
什么是DOI,文献DOI怎么找? 1251726
科研通“疑难数据库(出版商)”最低求助积分说明 607853
版权声明 596515