亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis

支持向量机 随机森林 机器学习 人工智能 逻辑回归 接收机工作特性 计算机科学 骨质疏松症 人工神经网络 医学 内科学
作者
Yiting Lin,Chao-Yu Chu,Kuo‐Sheng Hung,Chi‐Hua Lu,Edward M. Bednarczyk,Hsiang‐Yin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:225: 107028-107028 被引量:11
标识
DOI:10.1016/j.cmpb.2022.107028
摘要

The specific aim of this study is to develop machine learning models as a clinical approach for personalized treatment of osteoporosis. The model performance on outcome prediction was compared between four machine learning algorithms. Retrospective, electronic clinical data for patients with suspected or confirmed osteoporosis treated at Wan Fang Hospital between 2011 to 2018 were used as inputs for building the following predictive machine learning models,i.e., artificial neural network (ANN), random forest (RF), support vector machine (SVM) and logistic regression (LR) models. The predicted outcome was defined as an increase/decrease in T-score after treatment. A genetic algorithm was employed to select relevant variables as input features for each model; the leave-one-out method was applied for model building and internal validation. The model with best performance was selected by a separate set of testing. Area under the receiver operating characteristic curve, accuracy, precision, sensitivity and F1 score were calculated to evaluate model performance. Main analysis for all the patients with subclinical or confirmed osteoporosis and subgroup analysis for the patients with confirmed osteoporosis (T score < -2.5) were carried out in this study. A genetic algorithm was employed to select 12 to 18 features from all 33 variables for the four models. No difference was found in accuracy (ANN, 71.7%; LR, 70.0%; RF, 75.0%; SVM, 66.7%), precision (ANN, 80.0%; LR, 59.3%; RF, 70.0%; SVM, 63.6%), and AUC (ANN, 0.709; LR, 0.731; RF, 0.719; SVM, 0.702) among the ANN, LR, RF and SVM models. Main analysis in performance revealed significant recall in the LR model, as compared to ANN and SVM model; while subgroup revealed significant recall in ANN model, compared to LR and SVM model. Machine learning-based models hold potential in forecasting the outcomes of treatment for osteoporosis via early initiation of first-line therapy for patients with subclinical disease; or a switch to second-line treatment for patients with a high risk of impending treatment failure. This convenient approach can assist clinicians in adjusting treatment tailored to individual patient for prevention of disease progression or ineffective therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方悦完成签到 ,获得积分10
15秒前
48秒前
Lucas应助Janusfaces采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
herococa应助科研通管家采纳,获得60
1分钟前
herococa应助科研通管家采纳,获得10
1分钟前
TXZ06完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
zqq完成签到,获得积分0
2分钟前
Frankie发布了新的文献求助10
2分钟前
Frankie完成签到,获得积分10
2分钟前
2分钟前
王磊完成签到 ,获得积分10
2分钟前
倷倷完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
lmplzzp发布了新的文献求助10
3分钟前
chichqq发布了新的文献求助10
3分钟前
似水流年完成签到,获得积分10
3分钟前
滴滴滴完成签到 ,获得积分10
3分钟前
3分钟前
111完成签到,获得积分10
3分钟前
snmdpy发布了新的文献求助10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
3分钟前
Akim应助chichqq采纳,获得10
3分钟前
似水流年发布了新的文献求助10
3分钟前
3分钟前
无辜笑容发布了新的文献求助10
3分钟前
Menand完成签到,获得积分10
3分钟前
无辜笑容完成签到,获得积分10
3分钟前
善学以致用应助无辜笑容采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
远枫orz发布了新的文献求助30
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503050
关于积分的说明 11111175
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870748
科研通“疑难数据库(出版商)”最低求助积分说明 802250