Development of a high-throughput SNP array for sea cucumber (Apostichopus japonicus) and its application in genomic selection with MCP regularized deep neural networks

生物 基因分型 SNP基因分型 单核苷酸多态性 选择(遗传算法) 基因组选择 计算生物学 人口 SNP公司 遗传学 日本使徒 人工智能 计算机科学 基因型 基因 海参 人口学 社会学 生态学
作者
Jia Lv,Yangfan Wang,Ping Ni,Ping Lin,Hu Hou,Jun Ding,Yaqing Chang,Jiang Hu,Shi Wang,Zhenmin Bao
出处
期刊:Genomics [Elsevier]
卷期号:114 (4): 110426-110426 被引量:4
标识
DOI:10.1016/j.ygeno.2022.110426
摘要

High-throughput single nucleotide polymorphism (SNP) genotyping assays are powerful tools for genetic studies and genomic breeding applications for many species. Though large numbers of SNPs have been identified in sea cucumber (Apostichopus japonicus), but, as yet, no high-throughput genotyping platform is available for this species. In this study, we designed and developed a high-throughput 24 K SNP genotyping array named HaishenSNP24K for A. japonicus, based on the multi-objective-local optimization (MOLO) algorithm and HD-Marker genotyping method. The SNP array exhibited a relatively high genotyping call rate (> 96%), genotyping accuracy (>95%) and exhibited highly polymorphic in sea cucumber populations. In addition, we also assessed its application in genomic selection (GS). Deep neural networks (DNN) that can capture the complicated interactions of genes have been proposed as a promising tool in GS for SNP-based genomic prediction of complex traits in animal breeding. To overcome the problem of over-fitting when using the HaishenSNP24K array as high-dimensional DNN input, we developed minmax concave penalty (MCP) regularization for sparse deep neural networks (DNN-MCP) that finds an optimal sparse structure of a DNN by minimizing the square error subject to the non-convex penalty MCP on the parameters (weights and biases). Compared to two linear models, namely RR-GBLUP and Bayes B, and the nonlinear model DNN, DNN-MCP has greatly improved the genomic prediction ability for three quantitative traits (e.g., wet weight, dry weight and survival time) in the sea cucumber population. To the best of our knowledge, this is the first work to develop a high-throughput SNP array for A. japonicus and a new model DNN-MCP for genomic prediction of complex traits in GS. The present results provide evidence that supports the HaishenSNP24K array with DNN-MCP will be valuable for genetic studies and molecular breeding in A. japonicus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀剑愁完成签到 ,获得积分10
刚刚
Criminology34应助fei菲飞采纳,获得10
3秒前
congyjs完成签到,获得积分10
5秒前
科目三应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
changping应助科研通管家采纳,获得20
7秒前
汉堡包应助温柔海露采纳,获得10
7秒前
lianliyou应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得30
8秒前
Polaris应助科研通管家采纳,获得20
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
满意南霜完成签到 ,获得积分10
9秒前
秦月未完完成签到,获得积分10
9秒前
会魔法的老人完成签到,获得积分10
9秒前
CipherSage应助整齐晓筠采纳,获得10
9秒前
L_Zoe_D02完成签到,获得积分10
11秒前
11秒前
小许会更好完成签到,获得积分10
12秒前
沐风发布了新的文献求助20
12秒前
空白完成签到 ,获得积分10
13秒前
王博士发布了新的文献求助10
16秒前
summitekey完成签到 ,获得积分10
16秒前
奉天逍遥完成签到,获得积分10
17秒前
平淡的秋寒完成签到,获得积分10
19秒前
Maydalian完成签到,获得积分10
20秒前
淡然柚子完成签到,获得积分10
20秒前
20秒前
21秒前
Carrie发布了新的文献求助10
21秒前
21秒前
dyyisash完成签到 ,获得积分10
23秒前
刻苦的长颈鹿完成签到,获得积分10
23秒前
meimei完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306147
求助须知:如何正确求助?哪些是违规求助? 4452011
关于积分的说明 13853601
捐赠科研通 4339475
什么是DOI,文献DOI怎么找? 2382636
邀请新用户注册赠送积分活动 1377583
关于科研通互助平台的介绍 1345190