Development of a high-throughput SNP array for sea cucumber (Apostichopus japonicus) and its application in genomic selection with MCP regularized deep neural networks

生物 基因分型 SNP基因分型 单核苷酸多态性 选择(遗传算法) 基因组选择 计算生物学 人口 SNP公司 遗传学 日本使徒 人工智能 计算机科学 基因型 基因 海参 人口学 社会学 生态学
作者
Jia Lv,Yangfan Wang,Ping Ni,Ping Lin,Hu Hou,Jun Ding,Yaqing Chang,Jiang Hu,Shi Wang,Zhenmin Bao
出处
期刊:Genomics [Elsevier]
卷期号:114 (4): 110426-110426 被引量:4
标识
DOI:10.1016/j.ygeno.2022.110426
摘要

High-throughput single nucleotide polymorphism (SNP) genotyping assays are powerful tools for genetic studies and genomic breeding applications for many species. Though large numbers of SNPs have been identified in sea cucumber (Apostichopus japonicus), but, as yet, no high-throughput genotyping platform is available for this species. In this study, we designed and developed a high-throughput 24 K SNP genotyping array named HaishenSNP24K for A. japonicus, based on the multi-objective-local optimization (MOLO) algorithm and HD-Marker genotyping method. The SNP array exhibited a relatively high genotyping call rate (> 96%), genotyping accuracy (>95%) and exhibited highly polymorphic in sea cucumber populations. In addition, we also assessed its application in genomic selection (GS). Deep neural networks (DNN) that can capture the complicated interactions of genes have been proposed as a promising tool in GS for SNP-based genomic prediction of complex traits in animal breeding. To overcome the problem of over-fitting when using the HaishenSNP24K array as high-dimensional DNN input, we developed minmax concave penalty (MCP) regularization for sparse deep neural networks (DNN-MCP) that finds an optimal sparse structure of a DNN by minimizing the square error subject to the non-convex penalty MCP on the parameters (weights and biases). Compared to two linear models, namely RR-GBLUP and Bayes B, and the nonlinear model DNN, DNN-MCP has greatly improved the genomic prediction ability for three quantitative traits (e.g., wet weight, dry weight and survival time) in the sea cucumber population. To the best of our knowledge, this is the first work to develop a high-throughput SNP array for A. japonicus and a new model DNN-MCP for genomic prediction of complex traits in GS. The present results provide evidence that supports the HaishenSNP24K array with DNN-MCP will be valuable for genetic studies and molecular breeding in A. japonicus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haha完成签到,获得积分10
1秒前
超级天磊完成签到,获得积分10
1秒前
2秒前
alalei发布了新的文献求助10
3秒前
浆糊完成签到 ,获得积分10
5秒前
DreamMaker给DreamMaker的求助进行了留言
6秒前
wh雨发布了新的文献求助10
6秒前
摸鱼仙人完成签到,获得积分10
6秒前
shouz完成签到,获得积分10
6秒前
迷人的天抒完成签到 ,获得积分10
7秒前
wink发布了新的文献求助10
7秒前
李冰玉完成签到,获得积分10
7秒前
9秒前
SONGYEZI完成签到,获得积分0
11秒前
lili发布了新的文献求助10
12秒前
12秒前
科研的小迷妹完成签到,获得积分10
12秒前
哭泣老头发布了新的文献求助20
13秒前
Colo完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
egret完成签到,获得积分10
15秒前
15秒前
16秒前
李李完成签到,获得积分10
16秒前
热爱完成签到,获得积分10
17秒前
米虫完成签到,获得积分10
17秒前
19秒前
nature发布了新的文献求助10
19秒前
Drcai发布了新的文献求助10
20秒前
xiaoy发布了新的文献求助10
20秒前
20秒前
moli0424发布了新的文献求助10
21秒前
。。。完成签到,获得积分10
21秒前
21秒前
lili完成签到,获得积分10
21秒前
思源应助wink采纳,获得10
22秒前
Lucas应助Ray采纳,获得10
23秒前
司空晋鹏发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295297
求助须知:如何正确求助?哪些是违规求助? 4444855
关于积分的说明 13834820
捐赠科研通 4329178
什么是DOI,文献DOI怎么找? 2376556
邀请新用户注册赠送积分活动 1371823
关于科研通互助平台的介绍 1337080