等离子体子
材料科学
功勋
电介质
光电子学
超材料
欧姆接触
折射率
激光阈值
光学
纳米技术
物理
图层(电子)
波长
作者
Yi Zhou,Zhihe Guo,Xuyang Zhao,Feilong Wang,Zhiyuan Yu,Yizhen Chen,Zhiran Liu,Shuyu Zhang,Shulin Sun,Xiang Wu
标识
DOI:10.1002/adom.202200965
摘要
Abstract Localized surface plasmon resonances (LSPRs) in metallic nanostructures attract great attention for their potential applications such as highly sensitive optical sensors. However, the performance of LSPR sensors is strongly hampered by their low quality ( Q ) factors due to the intrinsic ohmic losses and far‐field radiation losses. Here, a kind of all‐metal metasurfaces that can achieve high‐ Q and high figure of merit (FOM) resonances based on bound states in the continuum (BICs), is theoretically designed and experimentally demonstrated. The devices can simultaneously exhibit symmetry‐protected and Friedrich–Wintgen quasi‐BICs features at normal incidence, leading to higher Q ‐factors than those solely inspired by single quasi‐BIC. Additionally, the constraint of symmetrical dielectric environment for common metasurfaces can be released by utilizing a metal substrate rather than a dielectric one. The proof‐of‐concept experiments demonstrate the high performances of such dual quasi‐BIC based plasmonic refractive index sensors with the Q ‐factor of 145, the sensitivity of 657 nm RIU ‐1 , and the FOM of 109 RIU ‐1 . These findings may stimulate some promising applications, such as biosensing, optical lasing, and light absorption.
科研通智能强力驱动
Strongly Powered by AbleSci AI