Insight into the Structure–Odor Relationship of Molecules: A Computational Study Based on Deep Learning

气味 人工智能 模式识别(心理学) 计算机科学 生物系统 卷积神经网络 分子描述符 多层感知器 机器学习 化学 数量结构-活动关系 人工神经网络 生物 有机化学
作者
Weichen Bo,Yuandong Yu,Ran He,Dongya Qin,Xin Xiao Zheng,Yue Wang,Botian Ding,Guizhao Liang
出处
期刊:Foods [MDPI AG]
卷期号:11 (14): 2033-2033
标识
DOI:10.3390/foods11142033
摘要

Molecules with pleasant odors, unacceptable odors, and even serious toxicity are closely related to human social life. It is impractical to identify the odors of molecules in large quantities (particularly hazardous odors) using experimental methods. Computer-aided methods have currently attracted increasing attention for the prediction of molecular odors. Here, through models based on multilayer perceptron (MLP) and physicochemical descriptors (MLP-Des), MLP and molecular fingerprint, and convolutional neural network (CNN), we conduct the two-class prediction of odor/no odor, fruity/no odor, floral/no odor, and woody/no odor, and the multi-class prediction of fruity/flowery/woody/no odor on our newly refined molecular odor datasets. We show that three kinds of predictors can robustly predict molecular odors. The MLP-Des model not only exhibits the best prediction results (the AUC values are 0.99 and 0.86 for the two- and multi-classification models, respectively) but can also well reflect the characteristics of the structure–odor relationship of molecules. The CNN model takes 2D molecular images as input and can automatically extract the structural features related to molecular odors. The proposed models are of great help for the prediction of molecular odorants, understanding the underlying relationship between chemical structure and odor perception, and the discovery of new odorous and/or hazardous molecules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Marciu33发布了新的文献求助10
1秒前
Lucas应助姬昂采纳,获得10
3秒前
4秒前
乐乐应助七斤文采纳,获得10
5秒前
仔仔发布了新的文献求助10
6秒前
雪sung发布了新的文献求助10
6秒前
刘潼潼发布了新的文献求助10
8秒前
10秒前
12秒前
FashionBoy应助犇骉采纳,获得10
12秒前
Paddi发布了新的文献求助10
13秒前
顾北发布了新的文献求助10
13秒前
华仔应助Pepper采纳,获得10
15秒前
15秒前
共享精神应助qzj采纳,获得10
16秒前
17秒前
GATT完成签到,获得积分20
18秒前
1004发布了新的文献求助30
19秒前
火乐发布了新的文献求助30
19秒前
why发布了新的文献求助10
19秒前
流星飞发布了新的文献求助10
20秒前
20秒前
完美世界应助LT采纳,获得10
20秒前
21秒前
英姑应助刘潼潼采纳,获得30
22秒前
orixero应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得50
23秒前
23秒前
狂野吐司应助科研通管家采纳,获得20
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455164
求助须知:如何正确求助?哪些是违规求助? 3050441
关于积分的说明 9021374
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502413
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693293