Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram

列线图 医学 接收机工作特性 肝硬化 逻辑回归 人工智能 放射科 判别式 机器学习 内科学 计算机科学
作者
Yayang Duan,Jing Qin,W.-Q. Qiu,Sy Li,Chenyang Li,A.-S. Liu,Xiang Chen,Chang Zhang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:77 (10): e723-e731 被引量:9
标识
DOI:10.1016/j.crad.2022.06.003
摘要

To investigate the performance of a generative adversarial network (GAN) model for staging liver fibrosis and its radiomics-based nomogram for predicting cirrhosis.This two-centre retrospective study included 434 patients for whom input data of ultrasound images and histopathological data (obtained within 1 month of ultrasound examinations) were assigned to the training cohort (249 patients), the internal cohort (92 patients), and the external (93 patients) cohort. A data augmentation method based on a GAN model was used. The discriminative performance was evaluated for classifying fibrosis of S4 and ≥S3. Deep-learning radiomics features were extracted for the prediction of cirrhosis (S4). To perform feature reduction and selection, the least absolute shrinkage and selection operator (LASSO) algorithm was applied. Radiomics scores, along with clinical factors, were incorporated into a nomogram using multivariable logistic regression analysis. The performance of the models was estimated with respect to discrimination power, calibration, and clinical benefits.The areas under the receiver operating characteristic curve (AUCs) values of the GAN were 0.832/0.762 (≥S3), and 0.867/0.835 (S4) for internal/external test sets, respectively. The radiomics nomogram that intergrated radiomics scores and clinical factors showed good calibration and discrimination ability of 0.922 (AUC) in the training dataset, 0.896 in the internal dataset, and 0.861 in the external dataset. Decision curve analysis (DCA) demonstrated that the nomogram outperformed radiologist and haematological indices in terms of the most clinical benefits.The GAN model could be applied to discriminate fibrosis stages, and a favourable predictive accuracy for diagnosing cirrhosis was achieved using a deep-learning radiomics nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助丫头采纳,获得30
刚刚
1秒前
2秒前
瑾蘆完成签到 ,获得积分10
3秒前
3秒前
DUAN完成签到,获得积分10
4秒前
4秒前
晓晓完成签到,获得积分10
4秒前
可爱的函函应助aaaaa采纳,获得10
5秒前
在水一方应助任伟超采纳,获得10
6秒前
online1881发布了新的文献求助10
7秒前
7秒前
真知棒完成签到,获得积分20
7秒前
7秒前
今天别生气完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
十三应助xu采纳,获得10
11秒前
11秒前
梅莉达完成签到 ,获得积分10
11秒前
樱桃汽水发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
lzp完成签到 ,获得积分10
14秒前
无聊的太清完成签到,获得积分10
15秒前
夏蓉完成签到,获得积分10
15秒前
16秒前
我爱学习发布了新的文献求助10
16秒前
dz发布了新的文献求助10
16秒前
丫头发布了新的文献求助30
16秒前
小猪发布了新的文献求助10
16秒前
16秒前
laity发布了新的文献求助10
16秒前
晨曦呢完成签到 ,获得积分10
16秒前
大模型应助hhkk采纳,获得10
17秒前
黄宇凡发布了新的文献求助10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296947
求助须知:如何正确求助?哪些是违规求助? 4445951
关于积分的说明 13837832
捐赠科研通 4331031
什么是DOI,文献DOI怎么找? 2377382
邀请新用户注册赠送积分活动 1372652
关于科研通互助平台的介绍 1338217