Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram

列线图 医学 接收机工作特性 肝硬化 逻辑回归 人工智能 放射科 判别式 机器学习 内科学 计算机科学
作者
Yayang Duan,Jing Qin,W.-Q. Qiu,Sy Li,Chenyang Li,A.-S. Liu,Xiang Chen,Chang Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:77 (10): e723-e731 被引量:9
标识
DOI:10.1016/j.crad.2022.06.003
摘要

To investigate the performance of a generative adversarial network (GAN) model for staging liver fibrosis and its radiomics-based nomogram for predicting cirrhosis.This two-centre retrospective study included 434 patients for whom input data of ultrasound images and histopathological data (obtained within 1 month of ultrasound examinations) were assigned to the training cohort (249 patients), the internal cohort (92 patients), and the external (93 patients) cohort. A data augmentation method based on a GAN model was used. The discriminative performance was evaluated for classifying fibrosis of S4 and ≥S3. Deep-learning radiomics features were extracted for the prediction of cirrhosis (S4). To perform feature reduction and selection, the least absolute shrinkage and selection operator (LASSO) algorithm was applied. Radiomics scores, along with clinical factors, were incorporated into a nomogram using multivariable logistic regression analysis. The performance of the models was estimated with respect to discrimination power, calibration, and clinical benefits.The areas under the receiver operating characteristic curve (AUCs) values of the GAN were 0.832/0.762 (≥S3), and 0.867/0.835 (S4) for internal/external test sets, respectively. The radiomics nomogram that intergrated radiomics scores and clinical factors showed good calibration and discrimination ability of 0.922 (AUC) in the training dataset, 0.896 in the internal dataset, and 0.861 in the external dataset. Decision curve analysis (DCA) demonstrated that the nomogram outperformed radiologist and haematological indices in terms of the most clinical benefits.The GAN model could be applied to discriminate fibrosis stages, and a favourable predictive accuracy for diagnosing cirrhosis was achieved using a deep-learning radiomics nomogram.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助wwww采纳,获得10
1秒前
wanci应助lihua采纳,获得10
1秒前
Yu应助LLL采纳,获得10
1秒前
吉吉完成签到,获得积分10
1秒前
1秒前
白敬亭小朋友完成签到,获得积分10
2秒前
糖果完成签到 ,获得积分10
2秒前
11完成签到 ,获得积分10
2秒前
杨帆完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
无花果应助Epiphany采纳,获得10
3秒前
刘旭环完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
酷波er应助程小明采纳,获得10
4秒前
东郭以云发布了新的文献求助10
4秒前
田様应助wujiwuhui采纳,获得10
5秒前
小晓俊发布了新的文献求助10
5秒前
研友_VZG7GZ应助yyt采纳,获得10
6秒前
栗子发布了新的文献求助10
6秒前
李大橘完成签到,获得积分10
6秒前
正直芒果发布了新的文献求助10
6秒前
科研通AI6应助芒go采纳,获得10
6秒前
chens627发布了新的文献求助10
6秒前
Ava应助外向梦山采纳,获得10
7秒前
7秒前
桐桐应助hoyihoyi采纳,获得10
7秒前
Judy发布了新的文献求助10
8秒前
8秒前
清爽外绣发布了新的文献求助10
9秒前
星辰大海应助憨憨小黄采纳,获得10
9秒前
wwt发布了新的文献求助10
9秒前
9秒前
万能图书馆应助dengy采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532190
求助须知:如何正确求助?哪些是违规求助? 4620957
关于积分的说明 14575781
捐赠科研通 4560709
什么是DOI,文献DOI怎么找? 2498949
邀请新用户注册赠送积分活动 1478927
关于科研通互助平台的介绍 1450190