Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram

列线图 医学 接收机工作特性 肝硬化 逻辑回归 人工智能 放射科 判别式 机器学习 内科学 计算机科学
作者
Yayang Duan,Jing Qin,W.-Q. Qiu,Sy Li,Chenyang Li,A.-S. Liu,Xiang Chen,Chang Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:77 (10): e723-e731 被引量:9
标识
DOI:10.1016/j.crad.2022.06.003
摘要

To investigate the performance of a generative adversarial network (GAN) model for staging liver fibrosis and its radiomics-based nomogram for predicting cirrhosis.This two-centre retrospective study included 434 patients for whom input data of ultrasound images and histopathological data (obtained within 1 month of ultrasound examinations) were assigned to the training cohort (249 patients), the internal cohort (92 patients), and the external (93 patients) cohort. A data augmentation method based on a GAN model was used. The discriminative performance was evaluated for classifying fibrosis of S4 and ≥S3. Deep-learning radiomics features were extracted for the prediction of cirrhosis (S4). To perform feature reduction and selection, the least absolute shrinkage and selection operator (LASSO) algorithm was applied. Radiomics scores, along with clinical factors, were incorporated into a nomogram using multivariable logistic regression analysis. The performance of the models was estimated with respect to discrimination power, calibration, and clinical benefits.The areas under the receiver operating characteristic curve (AUCs) values of the GAN were 0.832/0.762 (≥S3), and 0.867/0.835 (S4) for internal/external test sets, respectively. The radiomics nomogram that intergrated radiomics scores and clinical factors showed good calibration and discrimination ability of 0.922 (AUC) in the training dataset, 0.896 in the internal dataset, and 0.861 in the external dataset. Decision curve analysis (DCA) demonstrated that the nomogram outperformed radiologist and haematological indices in terms of the most clinical benefits.The GAN model could be applied to discriminate fibrosis stages, and a favourable predictive accuracy for diagnosing cirrhosis was achieved using a deep-learning radiomics nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jerry完成签到,获得积分10
1秒前
2秒前
小羊发布了新的文献求助10
5秒前
可爱代真完成签到,获得积分10
5秒前
简单的银耳汤完成签到,获得积分10
7秒前
留胡子的胡完成签到,获得积分10
7秒前
9秒前
11秒前
13秒前
瘦瘦完成签到,获得积分20
14秒前
bkagyin应助源源采纳,获得10
14秒前
充电宝应助Jasmine采纳,获得30
15秒前
NZH发布了新的文献求助10
16秒前
19秒前
马上毕业完成签到 ,获得积分10
21秒前
22秒前
22秒前
25秒前
28秒前
28秒前
小蘑菇应助Mrmaxist采纳,获得10
29秒前
西西歪发布了新的文献求助30
32秒前
桃青完成签到 ,获得积分10
32秒前
APHOLY发布了新的文献求助10
33秒前
爱听歌的谷丝完成签到,获得积分10
35秒前
申奥爸爸完成签到,获得积分10
38秒前
Pride完成签到 ,获得积分10
39秒前
罗罗诺亚完成签到,获得积分10
41秒前
41秒前
爆米花应助张鱼小丸子采纳,获得10
43秒前
Ogai完成签到,获得积分10
48秒前
NZH关闭了NZH文献求助
49秒前
桐桐应助995995采纳,获得10
50秒前
婷婷完成签到,获得积分10
50秒前
55秒前
儒雅的蓝完成签到,获得积分10
55秒前
ddd完成签到,获得积分10
57秒前
Light完成签到,获得积分10
58秒前
1分钟前
1分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082501
求助须知:如何正确求助?哪些是违规求助? 2735703
关于积分的说明 7538567
捐赠科研通 2385300
什么是DOI,文献DOI怎么找? 1264761
科研通“疑难数据库(出版商)”最低求助积分说明 612786
版权声明 597665