Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram

列线图 医学 接收机工作特性 肝硬化 逻辑回归 人工智能 放射科 判别式 机器学习 内科学 计算机科学
作者
Yayang Duan,Jing Qin,W.-Q. Qiu,Sy Li,Chenyang Li,A.-S. Liu,Xiang Chen,Chang Zhang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:77 (10): e723-e731 被引量:9
标识
DOI:10.1016/j.crad.2022.06.003
摘要

To investigate the performance of a generative adversarial network (GAN) model for staging liver fibrosis and its radiomics-based nomogram for predicting cirrhosis.This two-centre retrospective study included 434 patients for whom input data of ultrasound images and histopathological data (obtained within 1 month of ultrasound examinations) were assigned to the training cohort (249 patients), the internal cohort (92 patients), and the external (93 patients) cohort. A data augmentation method based on a GAN model was used. The discriminative performance was evaluated for classifying fibrosis of S4 and ≥S3. Deep-learning radiomics features were extracted for the prediction of cirrhosis (S4). To perform feature reduction and selection, the least absolute shrinkage and selection operator (LASSO) algorithm was applied. Radiomics scores, along with clinical factors, were incorporated into a nomogram using multivariable logistic regression analysis. The performance of the models was estimated with respect to discrimination power, calibration, and clinical benefits.The areas under the receiver operating characteristic curve (AUCs) values of the GAN were 0.832/0.762 (≥S3), and 0.867/0.835 (S4) for internal/external test sets, respectively. The radiomics nomogram that intergrated radiomics scores and clinical factors showed good calibration and discrimination ability of 0.922 (AUC) in the training dataset, 0.896 in the internal dataset, and 0.861 in the external dataset. Decision curve analysis (DCA) demonstrated that the nomogram outperformed radiologist and haematological indices in terms of the most clinical benefits.The GAN model could be applied to discriminate fibrosis stages, and a favourable predictive accuracy for diagnosing cirrhosis was achieved using a deep-learning radiomics nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的糖豆完成签到,获得积分10
刚刚
大模型应助健航o采纳,获得10
1秒前
zsj完成签到,获得积分10
2秒前
kunkunna完成签到 ,获得积分10
3秒前
XCL应助啦啦啦采纳,获得10
3秒前
清风完成签到 ,获得积分10
4秒前
wBw完成签到,获得积分0
5秒前
5秒前
TJ完成签到 ,获得积分10
5秒前
白开心完成签到,获得积分10
6秒前
Sene发布了新的文献求助10
6秒前
7秒前
赵Zhao完成签到,获得积分10
8秒前
9秒前
9秒前
shin0324完成签到,获得积分10
10秒前
白开心发布了新的文献求助10
11秒前
老何完成签到,获得积分10
12秒前
寒冷的盼芙完成签到,获得积分10
13秒前
蚍蜉渡海发布了新的文献求助10
13秒前
小猪哼唧完成签到,获得积分10
14秒前
15秒前
15秒前
dadadaniu发布了新的文献求助10
16秒前
lalala发布了新的文献求助10
17秒前
风中垣完成签到,获得积分10
17秒前
易湘富完成签到,获得积分10
18秒前
啦啦啦完成签到,获得积分20
18秒前
一颗橙子发布了新的文献求助10
18秒前
19秒前
眼睛大的甜瓜完成签到,获得积分10
20秒前
22秒前
22秒前
23秒前
2025顺顺利利完成签到 ,获得积分10
23秒前
愉快彩虹完成签到,获得积分10
23秒前
23秒前
25秒前
lixuegang2023完成签到,获得积分10
25秒前
吴晓萱发布了新的文献求助15
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4543360
求助须知:如何正确求助?哪些是违规求助? 3976023
关于积分的说明 12312760
捐赠科研通 3643842
什么是DOI,文献DOI怎么找? 2006722
邀请新用户注册赠送积分活动 1042015
科研通“疑难数据库(出版商)”最低求助积分说明 931179