Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram

列线图 医学 接收机工作特性 肝硬化 逻辑回归 人工智能 放射科 判别式 机器学习 内科学 计算机科学
作者
Yayang Duan,Jing Qin,W.-Q. Qiu,Sy Li,Chenyang Li,A.-S. Liu,Xiang Chen,Chang Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:77 (10): e723-e731 被引量:9
标识
DOI:10.1016/j.crad.2022.06.003
摘要

To investigate the performance of a generative adversarial network (GAN) model for staging liver fibrosis and its radiomics-based nomogram for predicting cirrhosis.This two-centre retrospective study included 434 patients for whom input data of ultrasound images and histopathological data (obtained within 1 month of ultrasound examinations) were assigned to the training cohort (249 patients), the internal cohort (92 patients), and the external (93 patients) cohort. A data augmentation method based on a GAN model was used. The discriminative performance was evaluated for classifying fibrosis of S4 and ≥S3. Deep-learning radiomics features were extracted for the prediction of cirrhosis (S4). To perform feature reduction and selection, the least absolute shrinkage and selection operator (LASSO) algorithm was applied. Radiomics scores, along with clinical factors, were incorporated into a nomogram using multivariable logistic regression analysis. The performance of the models was estimated with respect to discrimination power, calibration, and clinical benefits.The areas under the receiver operating characteristic curve (AUCs) values of the GAN were 0.832/0.762 (≥S3), and 0.867/0.835 (S4) for internal/external test sets, respectively. The radiomics nomogram that intergrated radiomics scores and clinical factors showed good calibration and discrimination ability of 0.922 (AUC) in the training dataset, 0.896 in the internal dataset, and 0.861 in the external dataset. Decision curve analysis (DCA) demonstrated that the nomogram outperformed radiologist and haematological indices in terms of the most clinical benefits.The GAN model could be applied to discriminate fibrosis stages, and a favourable predictive accuracy for diagnosing cirrhosis was achieved using a deep-learning radiomics nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅花K完成签到,获得积分10
1秒前
1秒前
2秒前
Echo发布了新的文献求助10
2秒前
2秒前
李欢发布了新的文献求助10
2秒前
ASDS完成签到,获得积分10
3秒前
3秒前
001完成签到,获得积分10
4秒前
上下完成签到 ,获得积分10
5秒前
雅雅发布了新的文献求助10
5秒前
Lucas应助郑博文采纳,获得10
6秒前
怡然安南完成签到 ,获得积分10
6秒前
科研通AI2S应助安安采纳,获得10
7秒前
优秀扬完成签到,获得积分10
7秒前
摇摇摇不匀完成签到 ,获得积分10
7秒前
科研牛马完成签到,获得积分10
7秒前
胡图图完成签到,获得积分0
8秒前
mxm完成签到,获得积分10
8秒前
科研长颈鹿完成签到,获得积分10
9秒前
蓝天0812发布了新的文献求助10
9秒前
9秒前
轻松雨旋完成签到 ,获得积分10
10秒前
苟永平完成签到 ,获得积分10
11秒前
12秒前
13秒前
在水一方应助Yu采纳,获得10
14秒前
小米粒完成签到,获得积分10
15秒前
哈哈哈完成签到,获得积分10
15秒前
zhounini1989完成签到,获得积分10
15秒前
李欢完成签到,获得积分10
15秒前
乔文达完成签到 ,获得积分10
15秒前
一个丙完成签到,获得积分10
16秒前
胡萝卜发布了新的文献求助10
16秒前
liu发布了新的文献求助10
17秒前
遗忘爱神关注了科研通微信公众号
18秒前
18秒前
务实的焦完成签到,获得积分10
20秒前
21秒前
平淡的水彤完成签到 ,获得积分20
21秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378909
求助须知:如何正确求助?哪些是违规求助? 4503292
关于积分的说明 14015481
捐赠科研通 4412031
什么是DOI,文献DOI怎么找? 2423615
邀请新用户注册赠送积分活动 1416548
关于科研通互助平台的介绍 1394032