Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram

列线图 医学 接收机工作特性 肝硬化 逻辑回归 人工智能 放射科 判别式 机器学习 内科学 计算机科学
作者
Yayang Duan,Jing Qin,W.-Q. Qiu,Sy Li,Chenyang Li,A.-S. Liu,Xiang Chen,Chang Zhang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:77 (10): e723-e731 被引量:9
标识
DOI:10.1016/j.crad.2022.06.003
摘要

To investigate the performance of a generative adversarial network (GAN) model for staging liver fibrosis and its radiomics-based nomogram for predicting cirrhosis.This two-centre retrospective study included 434 patients for whom input data of ultrasound images and histopathological data (obtained within 1 month of ultrasound examinations) were assigned to the training cohort (249 patients), the internal cohort (92 patients), and the external (93 patients) cohort. A data augmentation method based on a GAN model was used. The discriminative performance was evaluated for classifying fibrosis of S4 and ≥S3. Deep-learning radiomics features were extracted for the prediction of cirrhosis (S4). To perform feature reduction and selection, the least absolute shrinkage and selection operator (LASSO) algorithm was applied. Radiomics scores, along with clinical factors, were incorporated into a nomogram using multivariable logistic regression analysis. The performance of the models was estimated with respect to discrimination power, calibration, and clinical benefits.The areas under the receiver operating characteristic curve (AUCs) values of the GAN were 0.832/0.762 (≥S3), and 0.867/0.835 (S4) for internal/external test sets, respectively. The radiomics nomogram that intergrated radiomics scores and clinical factors showed good calibration and discrimination ability of 0.922 (AUC) in the training dataset, 0.896 in the internal dataset, and 0.861 in the external dataset. Decision curve analysis (DCA) demonstrated that the nomogram outperformed radiologist and haematological indices in terms of the most clinical benefits.The GAN model could be applied to discriminate fibrosis stages, and a favourable predictive accuracy for diagnosing cirrhosis was achieved using a deep-learning radiomics nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉石头发布了新的文献求助10
2秒前
隐形曼青应助唠叨的又菡采纳,获得10
2秒前
田様应助Michael采纳,获得10
3秒前
JamesPei应助无限的水云采纳,获得10
5秒前
leezz发布了新的文献求助30
6秒前
skyleon完成签到,获得积分10
6秒前
啊的课件教案完成签到,获得积分20
7秒前
梨花月应助wawoo采纳,获得10
7秒前
小马甲应助keren采纳,获得10
9秒前
9秒前
慕青应助xu采纳,获得10
9秒前
一只鲲完成签到,获得积分10
9秒前
魏头头完成签到 ,获得积分10
9秒前
pyrene完成签到 ,获得积分10
11秒前
月亮发布了新的文献求助10
11秒前
浮游应助藏匿采纳,获得10
11秒前
Shellingford完成签到,获得积分10
12秒前
自觉石头完成签到,获得积分10
15秒前
15秒前
Michael发布了新的文献求助10
16秒前
Ava应助聪慧的问筠采纳,获得10
16秒前
Rabbit完成签到 ,获得积分10
18秒前
YangYu发布了新的文献求助10
20秒前
Fledge0611发布了新的文献求助50
21秒前
bkagyin应助leezz采纳,获得30
21秒前
李爱国应助maclogos采纳,获得10
21秒前
星辰大海应助卢乃旋采纳,获得10
22秒前
Michael完成签到,获得积分20
22秒前
25秒前
25秒前
Tang发布了新的文献求助10
25秒前
执着幻桃完成签到,获得积分10
26秒前
shen完成签到,获得积分20
27秒前
30秒前
Youy完成签到 ,获得积分10
30秒前
gbr0519发布了新的文献求助10
30秒前
30秒前
小马甲应助万嘉俊采纳,获得10
31秒前
大白发布了新的文献求助10
31秒前
梨花月应助北筝采纳,获得10
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214945
求助须知:如何正确求助?哪些是违规求助? 4390248
关于积分的说明 13669320
捐赠科研通 4251801
什么是DOI,文献DOI怎么找? 2332881
邀请新用户注册赠送积分活动 1330468
关于科研通互助平台的介绍 1284265