Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram

列线图 医学 接收机工作特性 肝硬化 逻辑回归 人工智能 放射科 判别式 机器学习 内科学 计算机科学
作者
Yayang Duan,Jing Qin,W.-Q. Qiu,Sy Li,Chenyang Li,A.-S. Liu,Xiang Chen,Chang Zhang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:77 (10): e723-e731 被引量:9
标识
DOI:10.1016/j.crad.2022.06.003
摘要

To investigate the performance of a generative adversarial network (GAN) model for staging liver fibrosis and its radiomics-based nomogram for predicting cirrhosis.This two-centre retrospective study included 434 patients for whom input data of ultrasound images and histopathological data (obtained within 1 month of ultrasound examinations) were assigned to the training cohort (249 patients), the internal cohort (92 patients), and the external (93 patients) cohort. A data augmentation method based on a GAN model was used. The discriminative performance was evaluated for classifying fibrosis of S4 and ≥S3. Deep-learning radiomics features were extracted for the prediction of cirrhosis (S4). To perform feature reduction and selection, the least absolute shrinkage and selection operator (LASSO) algorithm was applied. Radiomics scores, along with clinical factors, were incorporated into a nomogram using multivariable logistic regression analysis. The performance of the models was estimated with respect to discrimination power, calibration, and clinical benefits.The areas under the receiver operating characteristic curve (AUCs) values of the GAN were 0.832/0.762 (≥S3), and 0.867/0.835 (S4) for internal/external test sets, respectively. The radiomics nomogram that intergrated radiomics scores and clinical factors showed good calibration and discrimination ability of 0.922 (AUC) in the training dataset, 0.896 in the internal dataset, and 0.861 in the external dataset. Decision curve analysis (DCA) demonstrated that the nomogram outperformed radiologist and haematological indices in terms of the most clinical benefits.The GAN model could be applied to discriminate fibrosis stages, and a favourable predictive accuracy for diagnosing cirrhosis was achieved using a deep-learning radiomics nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11235应助kongshi采纳,获得10
刚刚
刚刚
qian发布了新的文献求助10
1秒前
1秒前
Jasper应助adou采纳,获得10
1秒前
科研通AI6应助pu采纳,获得10
1秒前
所所应助LLLL采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
沈振扬应助黄燕采纳,获得20
4秒前
jiangjiang完成签到,获得积分10
4秒前
小六子完成签到,获得积分10
4秒前
5秒前
7弥LY完成签到 ,获得积分10
6秒前
8秒前
8秒前
蓝胖子完成签到,获得积分10
8秒前
kk应助独特的沛凝采纳,获得10
9秒前
科研通AI5应助杨晓毅采纳,获得10
9秒前
小六子发布了新的文献求助10
9秒前
隐形曼青应助YY采纳,获得10
11秒前
11秒前
YuuuY发布了新的文献求助10
11秒前
11秒前
LLLL完成签到,获得积分10
12秒前
12秒前
乐乐应助刘磊采纳,获得10
12秒前
猫的报恩完成签到,获得积分10
12秒前
研友_LwlAgn发布了新的文献求助10
12秒前
Milder完成签到,获得积分20
13秒前
13秒前
shirley发布了新的文献求助10
14秒前
Lucas应助野性的沉鱼采纳,获得10
14秒前
tourist585完成签到,获得积分10
14秒前
鸭先知发布了新的文献求助30
15秒前
15秒前
Milder发布了新的文献求助10
16秒前
LLLL发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
室外可见光通信与智能交通 500
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4876637
求助须知:如何正确求助?哪些是违规求助? 4164972
关于积分的说明 12920190
捐赠科研通 3922598
什么是DOI,文献DOI怎么找? 2153401
邀请新用户注册赠送积分活动 1171572
关于科研通互助平台的介绍 1075342