Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram

列线图 医学 接收机工作特性 肝硬化 逻辑回归 人工智能 放射科 判别式 机器学习 内科学 计算机科学
作者
Yayang Duan,Jing Qin,W.-Q. Qiu,Sy Li,Chenyang Li,A.-S. Liu,Xiang Chen,Chang Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:77 (10): e723-e731 被引量:9
标识
DOI:10.1016/j.crad.2022.06.003
摘要

To investigate the performance of a generative adversarial network (GAN) model for staging liver fibrosis and its radiomics-based nomogram for predicting cirrhosis.This two-centre retrospective study included 434 patients for whom input data of ultrasound images and histopathological data (obtained within 1 month of ultrasound examinations) were assigned to the training cohort (249 patients), the internal cohort (92 patients), and the external (93 patients) cohort. A data augmentation method based on a GAN model was used. The discriminative performance was evaluated for classifying fibrosis of S4 and ≥S3. Deep-learning radiomics features were extracted for the prediction of cirrhosis (S4). To perform feature reduction and selection, the least absolute shrinkage and selection operator (LASSO) algorithm was applied. Radiomics scores, along with clinical factors, were incorporated into a nomogram using multivariable logistic regression analysis. The performance of the models was estimated with respect to discrimination power, calibration, and clinical benefits.The areas under the receiver operating characteristic curve (AUCs) values of the GAN were 0.832/0.762 (≥S3), and 0.867/0.835 (S4) for internal/external test sets, respectively. The radiomics nomogram that intergrated radiomics scores and clinical factors showed good calibration and discrimination ability of 0.922 (AUC) in the training dataset, 0.896 in the internal dataset, and 0.861 in the external dataset. Decision curve analysis (DCA) demonstrated that the nomogram outperformed radiologist and haematological indices in terms of the most clinical benefits.The GAN model could be applied to discriminate fibrosis stages, and a favourable predictive accuracy for diagnosing cirrhosis was achieved using a deep-learning radiomics nomogram.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Alisa完成签到 ,获得积分10
3秒前
无限无声完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
春夏完成签到 ,获得积分10
4秒前
4秒前
4秒前
爱听歌凤灵完成签到,获得积分10
5秒前
lulu完成签到,获得积分10
5秒前
6秒前
炙热盼兰发布了新的文献求助10
6秒前
7秒前
7秒前
chenzhi发布了新的文献求助10
9秒前
且歌且行发布了新的文献求助20
10秒前
平常寄翠发布了新的文献求助10
10秒前
ommmw完成签到,获得积分10
11秒前
jmjm发布了新的文献求助10
11秒前
周冯雪完成签到 ,获得积分10
12秒前
愿好完成签到,获得积分10
12秒前
16秒前
CC完成签到,获得积分10
16秒前
天涯明月刀完成签到,获得积分10
16秒前
研友_LMpo68完成签到 ,获得积分0
18秒前
包容若风完成签到,获得积分10
18秒前
SciGPT应助chenzhi采纳,获得10
18秒前
KingYugene完成签到,获得积分10
19秒前
大葡萄发布了新的文献求助10
19秒前
浮浮世世发布了新的文献求助10
19秒前
guohuameike完成签到,获得积分10
19秒前
叶燕完成签到 ,获得积分10
19秒前
20秒前
Lucas应助科研通管家采纳,获得10
22秒前
cdercder应助科研通管家采纳,获得10
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
cdercder应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
强砸完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534726
关于积分的说明 14146477
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441717
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410587