已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram

列线图 医学 接收机工作特性 肝硬化 逻辑回归 人工智能 放射科 判别式 机器学习 内科学 计算机科学
作者
Yayang Duan,Jing Qin,W.-Q. Qiu,Sy Li,Chenyang Li,A.-S. Liu,Xiang Chen,Chang Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:77 (10): e723-e731 被引量:9
标识
DOI:10.1016/j.crad.2022.06.003
摘要

To investigate the performance of a generative adversarial network (GAN) model for staging liver fibrosis and its radiomics-based nomogram for predicting cirrhosis.This two-centre retrospective study included 434 patients for whom input data of ultrasound images and histopathological data (obtained within 1 month of ultrasound examinations) were assigned to the training cohort (249 patients), the internal cohort (92 patients), and the external (93 patients) cohort. A data augmentation method based on a GAN model was used. The discriminative performance was evaluated for classifying fibrosis of S4 and ≥S3. Deep-learning radiomics features were extracted for the prediction of cirrhosis (S4). To perform feature reduction and selection, the least absolute shrinkage and selection operator (LASSO) algorithm was applied. Radiomics scores, along with clinical factors, were incorporated into a nomogram using multivariable logistic regression analysis. The performance of the models was estimated with respect to discrimination power, calibration, and clinical benefits.The areas under the receiver operating characteristic curve (AUCs) values of the GAN were 0.832/0.762 (≥S3), and 0.867/0.835 (S4) for internal/external test sets, respectively. The radiomics nomogram that intergrated radiomics scores and clinical factors showed good calibration and discrimination ability of 0.922 (AUC) in the training dataset, 0.896 in the internal dataset, and 0.861 in the external dataset. Decision curve analysis (DCA) demonstrated that the nomogram outperformed radiologist and haematological indices in terms of the most clinical benefits.The GAN model could be applied to discriminate fibrosis stages, and a favourable predictive accuracy for diagnosing cirrhosis was achieved using a deep-learning radiomics nomogram.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
tang应助贝贝采纳,获得10
2秒前
美好依瑶发布了新的文献求助10
3秒前
充电宝应助年年年年采纳,获得10
4秒前
无尘发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
8R60d8应助科研通管家采纳,获得20
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得30
8秒前
清爽难胜发布了新的文献求助10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
YifanWang应助科研通管家采纳,获得10
8秒前
8秒前
轨迹应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
Aurora完成签到 ,获得积分10
9秒前
邱雪辉完成签到,获得积分10
9秒前
江浔卿完成签到 ,获得积分10
9秒前
10秒前
10秒前
小包子发布了新的文献求助10
10秒前
早早早完成签到,获得积分10
11秒前
11秒前
12秒前
Aimee发布了新的文献求助10
12秒前
13秒前
害羞的夏柳完成签到,获得积分10
13秒前
Beracah发布了新的文献求助10
14秒前
15秒前
Ava应助fancy采纳,获得10
16秒前
zijia发布了新的文献求助10
18秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938