A conformable fractional unbiased grey model with a flexible structure and it’s application in hydroelectricity consumption prediction

共形矩阵 过度拟合 水力发电 原始数据 水力发电 非线性系统 计算机科学 数学优化 工程类 数据挖掘 人工智能 数学 人工神经网络 物理 量子力学 电气工程 程序设计语言
作者
Yitong Liu,Yang Yang,Feng Pan,Dingyü Xue
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:367: 133029-133029 被引量:9
标识
DOI:10.1016/j.jclepro.2022.133029
摘要

Accurate forecasting results of hydropower consumption will help the energy sectors to make plans for sustainable development. Due to the obvious complex and nonlinear characteristics in hydropower consumption, a conformable fractional grey model with a flexible structure is developed in this paper. The flexible structure will enhance the grey model’s ability to forecast the data with nonlinear and complex features. Specifically, the structure of the novel model is flexible, which is selected on the basis of raw data automatically while avoiding overfitting. To further improve the forecasting accuracy, the conformable fractional operators are considered to reveal the historical evolution in the raw data. And the unbiased parameters are derived to avoid the inherent conversion errors in the traditional grey model. For validation,the novel model is compared with six grey models in three practical examples. The comparative models include five grey models with fixed structures and the latest fractional grey model with a variable structure. The results show that the novel model has the highest accuracy in the three examples. Then, based on the data from 2004 to 2020, the novel model is applied to forecast China’s hydropower consumption from 2021 to 2023. The results show an upward trend in the next three years, reaching 3307.65 TWh in 2023. However, the annual growth rate will drop to 0.29% in 2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助无奈傲菡采纳,获得10
刚刚
故意的傲玉应助FENGHUI采纳,获得10
1秒前
2秒前
科研通AI5应助nextconnie采纳,获得10
3秒前
James完成签到,获得积分10
3秒前
4秒前
Lucas应助sun采纳,获得10
5秒前
KristenStewart完成签到,获得积分10
7秒前
过时的热狗完成签到,获得积分10
7秒前
点点完成签到,获得积分10
7秒前
Zxc发布了新的文献求助10
8秒前
涨芝士完成签到 ,获得积分10
9秒前
10秒前
无名欧文关注了科研通微信公众号
10秒前
科研123完成签到,获得积分10
12秒前
crescent完成签到 ,获得积分10
14秒前
无奈傲菡发布了新的文献求助10
14秒前
烟花应助123号采纳,获得10
17秒前
超帅的遥完成签到,获得积分10
17秒前
Zxc完成签到,获得积分10
18秒前
lbt完成签到 ,获得积分10
19秒前
yao完成签到 ,获得积分10
20秒前
20秒前
22秒前
23秒前
23秒前
doudou完成签到 ,获得积分10
23秒前
BCS完成签到,获得积分10
23秒前
领导范儿应助KYN采纳,获得10
23秒前
24秒前
独特的莫言完成签到,获得积分10
26秒前
lin发布了新的文献求助10
27秒前
aero完成签到 ,获得积分10
29秒前
123号完成签到,获得积分10
31秒前
充电宝应助TT采纳,获得10
33秒前
34秒前
34秒前
英姑应助荒野星辰采纳,获得10
36秒前
36秒前
YHY完成签到,获得积分10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849