Building clustering for regional seismic response and damage analysis

范畴变量 聚类分析 自编码 计算机科学 脆弱性评估 子空间拓扑 地震分析 数据挖掘 脆弱性(计算) 土木工程 人工智能 结构工程 人工神经网络 工程类 机器学习 心理学 计算机安全 心理弹性 心理治疗师
作者
Amin Ghasemi,Max T. Stephens
出处
期刊:Earthquake Spectra [SAGE Publishing]
卷期号:38 (4): 2941-2969 被引量:6
标识
DOI:10.1177/87552930221104838
摘要

This article presents a framework to cluster buildings into typologically similar groups and select indicator buildings for regional seismic response and damage analysis. The framework requires a robust database of buildings to provide high-level structural and site information of buildings. Here, a database of 234 reinforced concrete buildings with five or more above-ground stories in the central business district of Wellington, New Zealand, has been selected as the case study of this research. First, key structural and site parameters that contribute to the seismic demand, response, and damage of each building are extracted from the database. Extracted parameters comprise three numerical and five categorical attributes of each building, including the year of construction, height, period, lateral load resisting system, floor system, site subsoil class, importance level, and strong motion station. Next, two prominent unsupervised machine learning clustering approaches are utilized to cluster the mixed categorical and numerical building database: k-prototype on the mixed numerical and categorical database and k-means on principal components numerical subspace adopted from factor analysis of mixed data (FAMD). A novel autoencoder deep learning neural network is also designed and trained to convert the mixed data into a low-dimensional subspace called latent space and feed this into k-means for clustering. The proposed autoencoder method is demonstrated to be more effective at clustering buildings into useful typological clusters for seismic response and damage analysis based on multiple criteria from both data-science and engineering perspectives. The details of selected indicator buildings for each similar seismic vulnerability cluster are also represented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Atlantis完成签到,获得积分10
刚刚
Bellis完成签到 ,获得积分10
刚刚
外向翠萱发布了新的文献求助10
刚刚
刚刚
科研小白发布了新的文献求助10
1秒前
神勇朝雪给清脆易梦的求助进行了留言
1秒前
camile发布了新的文献求助10
1秒前
2秒前
科研通AI5应助阳光易巧采纳,获得10
3秒前
陈龙完成签到,获得积分10
3秒前
完美世界应助towanda采纳,获得10
4秒前
4秒前
ysyslalala完成签到,获得积分10
5秒前
吴彦祖发布了新的文献求助10
5秒前
落寞电灯胆完成签到,获得积分10
5秒前
6秒前
小马甲应助HJJHJH采纳,获得10
6秒前
7秒前
yi完成签到,获得积分10
10秒前
10秒前
端庄断秋发布了新的文献求助10
11秒前
11秒前
李健应助诚心谷南采纳,获得10
11秒前
12秒前
12秒前
外向翠萱完成签到,获得积分10
12秒前
iridescent完成签到,获得积分10
12秒前
大模型应助淡写采纳,获得10
12秒前
14秒前
14秒前
14秒前
哈哈哈发布了新的文献求助10
15秒前
ding应助Atlantis采纳,获得10
15秒前
雪山飞龙发布了新的文献求助10
16秒前
Zyq发布了新的文献求助30
16秒前
阳光易巧发布了新的文献求助10
17秒前
17秒前
lll发布了新的文献求助10
18秒前
橙橙橙橙发布了新的文献求助10
20秒前
ikin完成签到,获得积分20
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732896
求助须知:如何正确求助?哪些是违规求助? 3277033
关于积分的说明 10000371
捐赠科研通 2992746
什么是DOI,文献DOI怎么找? 1642467
邀请新用户注册赠送积分活动 780369
科研通“疑难数据库(出版商)”最低求助积分说明 748789