Organic Synaptic Transistors Based on a Hybrid Trapping Layer for Neuromorphic Computing

神经形态工程学 材料科学 计算机科学 神经促进 冯·诺依曼建筑 晶体管 突触后电流 兴奋性突触后电位 人工神经网络 光电子学 抑制性突触后电位 神经科学 人工智能 电气工程 电压 工程类 操作系统 生物
作者
Shuqiong Lan,Xiaoyan Wang,Rengjian Yu,Changjie Zhou,Minshuai Wang,Xiaomei Cai
出处
期刊:IEEE Electron Device Letters [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 1255-1258 被引量:8
标识
DOI:10.1109/led.2022.3182816
摘要

Traditional Von-Neumann computers would not meet the needs of storage and processing a large amount of information in the era of artificial intelligence owing to the separated storage and processing unit. Inspired by the human brain, various electronic devices have been developed for neuromorphic computing to conquer the von Neumann bottleneck. Organic synaptic transistors have attracted increasing interest due to their advantages of low cost, flexibility and ease of solution fabrication. However, most synaptic transistors based on the charge trapping principle use a single material, which limits the adjustment of synaptic plasticity. Here, a novel synaptic device based on a hybrid trapping layer was proposed and investigated. The device with a hybrid trapping layer exhibits a larger memory window than the device with a trapping layer based on single material, indicating that the device with hybrid trapping has a larger trapping capability. Moreover, our synaptic device was utilized to successfully simulate typical synaptic properties: excitatory postsynaptic current, inhibitory postsynaptic current, paired-pulse facilitation, paired-pulse depression and the transition from short-term plasticity to long-term plasticity. Furthermore, an artificial neural network was simulated and exhibited a high recognition accuracy. Therefore, the proposed device could promote the development of highly efficient neuromorphic computing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助150
刚刚
付威威完成签到,获得积分10
刚刚
岛屿发布了新的文献求助10
1秒前
调皮的问芙完成签到 ,获得积分10
1秒前
1秒前
大白沙子完成签到,获得积分10
1秒前
2秒前
橙橙橙橙完成签到,获得积分10
2秒前
丘比特应助毛毛弟采纳,获得10
2秒前
2秒前
no1isme完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
英勇的沛春完成签到 ,获得积分10
4秒前
隐形曼青应助孔大漂亮采纳,获得10
4秒前
丛士乔完成签到,获得积分10
4秒前
4秒前
kiki发布了新的文献求助30
5秒前
cooper完成签到 ,获得积分10
5秒前
HarryQ完成签到,获得积分10
6秒前
wxj发布了新的文献求助10
6秒前
咕咕嘎嘎完成签到,获得积分10
6秒前
7秒前
俭朴的可冥完成签到,获得积分10
7秒前
Yang_728发布了新的文献求助10
7秒前
科研通AI5应助岛屿采纳,获得10
7秒前
Cxxxxxxv完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助50
9秒前
9秒前
TIPHA发布了新的文献求助10
9秒前
艾欧大贝发布了新的文献求助10
10秒前
赘婿应助XYT采纳,获得10
10秒前
科研通AI5应助SONG采纳,获得10
10秒前
10秒前
10秒前
美好向日葵完成签到,获得积分10
11秒前
12秒前
彭于晏应助Sarah采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917