Organic Synaptic Transistors Based on a Hybrid Trapping Layer for Neuromorphic Computing

神经形态工程学 材料科学 计算机科学 神经促进 冯·诺依曼建筑 晶体管 突触后电流 兴奋性突触后电位 人工神经网络 光电子学 抑制性突触后电位 神经科学 人工智能 电气工程 电压 工程类 操作系统 生物
作者
Shuqiong Lan,Xiaoyan Wang,Rengjian Yu,Changjie Zhou,Minshuai Wang,Xiaomei Cai
出处
期刊:IEEE Electron Device Letters [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 1255-1258 被引量:8
标识
DOI:10.1109/led.2022.3182816
摘要

Traditional Von-Neumann computers would not meet the needs of storage and processing a large amount of information in the era of artificial intelligence owing to the separated storage and processing unit. Inspired by the human brain, various electronic devices have been developed for neuromorphic computing to conquer the von Neumann bottleneck. Organic synaptic transistors have attracted increasing interest due to their advantages of low cost, flexibility and ease of solution fabrication. However, most synaptic transistors based on the charge trapping principle use a single material, which limits the adjustment of synaptic plasticity. Here, a novel synaptic device based on a hybrid trapping layer was proposed and investigated. The device with a hybrid trapping layer exhibits a larger memory window than the device with a trapping layer based on single material, indicating that the device with hybrid trapping has a larger trapping capability. Moreover, our synaptic device was utilized to successfully simulate typical synaptic properties: excitatory postsynaptic current, inhibitory postsynaptic current, paired-pulse facilitation, paired-pulse depression and the transition from short-term plasticity to long-term plasticity. Furthermore, an artificial neural network was simulated and exhibited a high recognition accuracy. Therefore, the proposed device could promote the development of highly efficient neuromorphic computing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aom发布了新的文献求助20
刚刚
可宝想当富婆完成签到 ,获得积分10
刚刚
火星上的天思完成签到,获得积分10
刚刚
刚刚
LIN完成签到,获得积分10
刚刚
JamesPei应助缓慢易云采纳,获得10
1秒前
CodeCraft应助Laraine采纳,获得10
2秒前
2秒前
卉酱完成签到,获得积分10
2秒前
Kate完成签到,获得积分10
2秒前
林夏发布了新的文献求助10
2秒前
小思雅发布了新的文献求助10
2秒前
ZJCGD发布了新的文献求助10
3秒前
踹脸大妈完成签到,获得积分10
3秒前
佳仪完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
Akim应助哎呀呀采纳,获得10
6秒前
sljzhangbiao11完成签到,获得积分10
7秒前
宋宋关注了科研通微信公众号
7秒前
JamesPei应助12334采纳,获得10
7秒前
7秒前
zzzzz给zzzzz的求助进行了留言
7秒前
梦在远方完成签到 ,获得积分10
7秒前
8秒前
烟花应助牛牛采纳,获得10
8秒前
满意的山水完成签到,获得积分20
10秒前
10秒前
lcx66666发布了新的文献求助10
10秒前
DONG完成签到,获得积分10
10秒前
完美世界应助十六采纳,获得10
10秒前
0411345完成签到,获得积分10
10秒前
11秒前
猪嗝铁铁完成签到 ,获得积分10
11秒前
无尽夏完成签到,获得积分10
11秒前
累哥发布了新的文献求助10
11秒前
YK发布了新的文献求助10
11秒前
Caicai发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582