Autonomous Navigation System for Indoor Mobile Robots Based on a Multi-sensor Fusion Technology

计算机科学 运动规划 计算机视觉 人工智能 惯性测量装置 激光雷达 网格参考 同时定位和映射 点云 机器人 移动机器人 实时计算 构造(python库) 占用网格映射 移动机器人导航 传感器融合 路径(计算) 机器人控制 地理 遥感 程序设计语言
作者
Hongcheng Wang,Niansheng Chen,Dingyu Yang,Guangyu Fan
出处
期刊:Communications in computer and information science 卷期号:: 502-517 被引量:1
标识
DOI:10.1007/978-981-19-4546-5_39
摘要

Map construction and path planning are two critical problems for an autonomous navigation system. One traditional map construction method is to construct a 2D grid map based on LiDAR, but this method has some limits. It easily ignores 3D information which affects the accuracy of navigation. Another one is visual SLAM techniques, such as ORB-SLAM2 and S-PTAM algorithms, which can recognize 3D objects. But the visual methods perform not well because of light changes. Some conventional path planning algorithms, such as TEB and DWA, are proposed for auto-navigation. However, those algorithms are likely to go to a stalemate due to local optimum, or have the problems of collision caused by sudden speed changes in constrained environments. In order to address these issues, this paper proposes a multi-sensor fusion method for map construction and autonomous navigation. Firstly, the fusion model combines RGB-D, lidar laser, and inertial measurement unit (IMU) to construct 2D grid maps and 3D color point cloud maps in real-time. Next, we present an improved local planning algorithm (Opt_TEB) to solve the velocity mutation problem, enabling the robot to get a collision-free path. We implemented the whole system based on the ROS framework, which is a wide used an open-source robot operating system. The map construction and path planning algorithms are running on the robot, while the visualization and control modules are deployed on a back-end server. The experimental results illustrate that the multi-sensor fusion algorithm is able to conform to the original map more than the 2D grid map. Furthermore, our improved algorithm Opt_TEB performs smoothly and has no collision with obstacles in 30 trials. The navigation speed is improved by 4.2% and 11.5% compared to TEB and DWA, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰的海之完成签到,获得积分10
2秒前
章章发布了新的文献求助10
3秒前
vickeylea发布了新的文献求助10
4秒前
无风发布了新的文献求助10
4秒前
赘婿应助XZ段采纳,获得10
5秒前
mhs发布了新的文献求助10
5秒前
丘比特应助Lin采纳,获得10
6秒前
6秒前
9秒前
10秒前
隐形曼青应助顺利绮烟采纳,获得10
11秒前
Elhsin_Karte完成签到,获得积分10
11秒前
11秒前
12秒前
阿辉发布了新的文献求助10
12秒前
spy发布了新的文献求助10
14秒前
Ava应助章章采纳,获得10
15秒前
DDD完成签到,获得积分10
16秒前
17秒前
稻草人发布了新的文献求助10
17秒前
ding应助DDD采纳,获得30
19秒前
康康XY完成签到 ,获得积分10
21秒前
Lin发布了新的文献求助10
22秒前
共享精神应助spy采纳,获得10
23秒前
23秒前
张奇完成签到 ,获得积分10
24秒前
海盗船长完成签到,获得积分10
25秒前
JamesPei应助飞快的金鑫采纳,获得10
25秒前
稻草人完成签到,获得积分10
26秒前
片刻窘境发布了新的文献求助10
27秒前
熊二浪发布了新的文献求助10
27秒前
XZ段发布了新的文献求助10
28秒前
所所应助qq采纳,获得10
28秒前
田様应助拟好啊采纳,获得10
30秒前
天天快乐应助zzz采纳,获得10
30秒前
xxxilby发布了新的文献求助10
30秒前
张乙一发布了新的文献求助10
32秒前
33秒前
34秒前
徐欣然完成签到 ,获得积分10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999649
求助须知:如何正确求助?哪些是违规求助? 3539089
关于积分的说明 11275836
捐赠科研通 3277841
什么是DOI,文献DOI怎么找? 1807756
邀请新用户注册赠送积分活动 884129
科研通“疑难数据库(出版商)”最低求助积分说明 810142