Autonomous Navigation System for Indoor Mobile Robots Based on a Multi-sensor Fusion Technology

计算机科学 运动规划 计算机视觉 人工智能 惯性测量装置 激光雷达 网格参考 同时定位和映射 点云 机器人 移动机器人 实时计算 构造(python库) 占用网格映射 移动机器人导航 传感器融合 路径(计算) 机器人控制 地理 遥感 程序设计语言
作者
Hongcheng Wang,Niansheng Chen,Dingyu Yang,Guangyu Fan
出处
期刊:Communications in computer and information science 卷期号:: 502-517
标识
DOI:10.1007/978-981-19-4546-5_39
摘要

Map construction and path planning are two critical problems for an autonomous navigation system. One traditional map construction method is to construct a 2D grid map based on LiDAR, but this method has some limits. It easily ignores 3D information which affects the accuracy of navigation. Another one is visual SLAM techniques, such as ORB-SLAM2 and S-PTAM algorithms, which can recognize 3D objects. But the visual methods perform not well because of light changes. Some conventional path planning algorithms, such as TEB and DWA, are proposed for auto-navigation. However, those algorithms are likely to go to a stalemate due to local optimum, or have the problems of collision caused by sudden speed changes in constrained environments. In order to address these issues, this paper proposes a multi-sensor fusion method for map construction and autonomous navigation. Firstly, the fusion model combines RGB-D, lidar laser, and inertial measurement unit (IMU) to construct 2D grid maps and 3D color point cloud maps in real-time. Next, we present an improved local planning algorithm (Opt_TEB) to solve the velocity mutation problem, enabling the robot to get a collision-free path. We implemented the whole system based on the ROS framework, which is a wide used an open-source robot operating system. The map construction and path planning algorithms are running on the robot, while the visualization and control modules are deployed on a back-end server. The experimental results illustrate that the multi-sensor fusion algorithm is able to conform to the original map more than the 2D grid map. Furthermore, our improved algorithm Opt_TEB performs smoothly and has no collision with obstacles in 30 trials. The navigation speed is improved by 4.2% and 11.5% compared to TEB and DWA, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxq完成签到 ,获得积分10
刚刚
franklvlei完成签到,获得积分10
刚刚
共享精神应助yitang采纳,获得10
刚刚
猪猪hero发布了新的文献求助10
刚刚
科研通AI5应助咕噜仔采纳,获得10
刚刚
1秒前
tRNA完成签到,获得积分10
1秒前
WNL发布了新的文献求助10
2秒前
平淡南霜发布了新的文献求助10
2秒前
2秒前
共享精神应助我爱读文献采纳,获得10
2秒前
英俊的铭应助感动的世平采纳,获得10
3秒前
3秒前
柒八染发布了新的文献求助10
3秒前
3秒前
zewangguo完成签到,获得积分20
3秒前
lx完成签到,获得积分20
4秒前
Ssyong完成签到 ,获得积分10
4秒前
4秒前
luohan完成签到,获得积分10
4秒前
诚心的大碗完成签到,获得积分10
4秒前
晾猫人完成签到,获得积分10
4秒前
4秒前
花开hhhhhhh完成签到,获得积分10
4秒前
欢欢完成签到,获得积分10
5秒前
Joshua发布了新的文献求助10
5秒前
可爱的函函应助Tira采纳,获得10
5秒前
lqq的一家之主完成签到,获得积分10
6秒前
陈陈完成签到 ,获得积分10
6秒前
么系么系完成签到,获得积分10
6秒前
7秒前
坤坤完成签到,获得积分10
7秒前
东风第一枝完成签到,获得积分20
7秒前
欢欢发布了新的文献求助10
7秒前
Jasper应助易安采纳,获得10
9秒前
9秒前
一一发布了新的文献求助10
9秒前
10秒前
Muller完成签到,获得积分10
10秒前
经法发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678