Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing

败血症 医学 预警得分 预警系统 急诊科 急诊医学 医疗急救 介绍(产科) 医疗保健 临床决策支持系统 重症监护医学 决策支持系统 计算机科学 内科学 护理部 人工智能 外科 电信 经济 经济增长
作者
Katharine E. Henry,Roy J. Adams,Cassandra Parent,Hossein Soleimani,Anirudh Sridharan,Lauren Johnson,David N. Hager,Sara E. Cosgrove,Andrew Markowski,Eili Klein,Edward S. Chen,Mustapha Saheed,Maureen Henley,Sheila Miranda,Katrina Houston,Robert C. Linton,Anushree R. Ahluwalia,Albert W. Wu,Suchi Saria
出处
期刊:Nature Medicine [Springer Nature]
卷期号:28 (7): 1447-1454 被引量:58
标识
DOI:10.1038/s41591-022-01895-z
摘要

Machine learning-based clinical decision support tools for sepsis create opportunities to identify at-risk patients and initiate treatments at early time points, which is critical for improving sepsis outcomes. In view of the increasing use of such systems, better understanding of how they are adopted and used by healthcare providers is needed. Here, we analyzed provider interactions with a sepsis early detection tool (Targeted Real-time Early Warning System), which was deployed at five hospitals over a 2-year period. Among 9,805 retrospectively identified sepsis cases, the early detection tool achieved high sensitivity (82% of sepsis cases were identified) and a high rate of adoption: 89% of all alerts by the system were evaluated by a physician or advanced practice provider and 38% of evaluated alerts were confirmed by a provider. Adjusting for patient presentation and severity, patients with sepsis whose alert was confirmed by a provider within 3 h had a 1.85-h (95% CI 1.66–2.00) reduction in median time to first antibiotic order compared to patients with sepsis whose alert was either dismissed, confirmed more than 3 h after the alert or never addressed in the system. Finally, we found that emergency department providers and providers who had previous interactions with an alert were more likely to interact with alerts, as well as to confirm alerts on retrospectively identified patients with sepsis. Beyond efforts to improve the performance of early warning systems, efforts to improve adoption are essential to their clinical impact and should focus on understanding providers' knowledge of, experience with and attitudes toward such systems. Prospective evaluation of a machine learning-based early warning system for sepsis, deployed at five hospitals, showed that healthcare providers interacted with the system at a high rate and that this interaction was associated with faster antibiotic ordering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Herr_Zheng完成签到,获得积分10
1秒前
小二完成签到,获得积分20
1秒前
漂亮的从蕾完成签到,获得积分10
2秒前
asdxsweef应助永夜的极光20采纳,获得30
4秒前
霖霖向前冲完成签到,获得积分10
4秒前
包容汉堡完成签到 ,获得积分10
5秒前
孙意冉完成签到,获得积分10
5秒前
大哥发布了新的文献求助10
6秒前
土拨闹闹鼠完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助xu55采纳,获得10
7秒前
Kete完成签到 ,获得积分10
7秒前
太陽完成签到 ,获得积分10
8秒前
缥缈幻翠完成签到,获得积分10
11秒前
空白完成签到,获得积分10
11秒前
gjx完成签到 ,获得积分10
11秒前
ruann完成签到 ,获得积分10
11秒前
共享精神应助开心颜采纳,获得10
11秒前
13秒前
放飞的羊驼完成签到,获得积分10
13秒前
zyy发布了新的文献求助30
13秒前
田様应助A溶大美噶采纳,获得10
13秒前
evak发布了新的文献求助10
14秒前
蜀都中心完成签到,获得积分20
14秒前
14秒前
yfy完成签到 ,获得积分10
14秒前
Lion完成签到,获得积分10
14秒前
15秒前
15秒前
ybdx完成签到,获得积分10
15秒前
15秒前
纪星星完成签到 ,获得积分10
16秒前
坦率的惜雪完成签到 ,获得积分10
16秒前
田様应助风中黎昕采纳,获得10
17秒前
JimmyFun发布了新的文献求助10
17秒前
坐等时光看轻自己完成签到,获得积分10
18秒前
于芋菊发布了新的文献求助10
18秒前
研究啥完成签到,获得积分10
19秒前
weizhao发布了新的文献求助10
20秒前
xiaofeiyang1122完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307802
求助须知:如何正确求助?哪些是违规求助? 2941301
关于积分的说明 8502750
捐赠科研通 2615835
什么是DOI,文献DOI怎么找? 1429200
科研通“疑难数据库(出版商)”最低求助积分说明 663673
邀请新用户注册赠送积分活动 648644