Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing

败血症 医学 预警得分 预警系统 急诊科 急诊医学 医疗急救 介绍(产科) 医疗保健 临床决策支持系统 重症监护医学 决策支持系统 计算机科学 内科学 护理部 人工智能 外科 经济 电信 经济增长
作者
Katharine E. Henry,Roy J. Adams,Cassandra Parent,Hossein Soleimani,Anirudh Sridharan,Lauren Johnson,David N. Hager,Sara E. Cosgrove,Andrew Markowski,Eili Klein,Edward S. Chen,Mustapha Saheed,Maureen Henley,Sheila Miranda,Katrina Houston,Robert C. Linton,Anushree R. Ahluwalia,Albert W. Wu,Suchi Saria
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:28 (7): 1447-1454 被引量:64
标识
DOI:10.1038/s41591-022-01895-z
摘要

Machine learning-based clinical decision support tools for sepsis create opportunities to identify at-risk patients and initiate treatments at early time points, which is critical for improving sepsis outcomes. In view of the increasing use of such systems, better understanding of how they are adopted and used by healthcare providers is needed. Here, we analyzed provider interactions with a sepsis early detection tool (Targeted Real-time Early Warning System), which was deployed at five hospitals over a 2-year period. Among 9,805 retrospectively identified sepsis cases, the early detection tool achieved high sensitivity (82% of sepsis cases were identified) and a high rate of adoption: 89% of all alerts by the system were evaluated by a physician or advanced practice provider and 38% of evaluated alerts were confirmed by a provider. Adjusting for patient presentation and severity, patients with sepsis whose alert was confirmed by a provider within 3 h had a 1.85-h (95% CI 1.66–2.00) reduction in median time to first antibiotic order compared to patients with sepsis whose alert was either dismissed, confirmed more than 3 h after the alert or never addressed in the system. Finally, we found that emergency department providers and providers who had previous interactions with an alert were more likely to interact with alerts, as well as to confirm alerts on retrospectively identified patients with sepsis. Beyond efforts to improve the performance of early warning systems, efforts to improve adoption are essential to their clinical impact and should focus on understanding providers' knowledge of, experience with and attitudes toward such systems. Prospective evaluation of a machine learning-based early warning system for sepsis, deployed at five hospitals, showed that healthcare providers interacted with the system at a high rate and that this interaction was associated with faster antibiotic ordering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
D33sama完成签到,获得积分10
1秒前
1秒前
hbb完成签到,获得积分10
1秒前
jiaru发布了新的文献求助10
2秒前
拼搏蜻蜓完成签到,获得积分10
2秒前
2秒前
蜡笔小舒发布了新的文献求助10
2秒前
yangjiali完成签到 ,获得积分10
2秒前
RR发布了新的文献求助10
2秒前
玖文发布了新的文献求助10
2秒前
DDDD源完成签到,获得积分10
3秒前
3秒前
陈军发布了新的文献求助10
3秒前
邱文发布了新的文献求助30
3秒前
轻松砖头发布了新的文献求助10
3秒前
SOS完成签到,获得积分10
3秒前
闫俊发布了新的文献求助10
3秒前
3秒前
bey完成签到,获得积分10
4秒前
4秒前
魔幻的半雪完成签到,获得积分10
4秒前
斯文败类应助10采纳,获得10
4秒前
嗡嗡完成签到,获得积分10
4秒前
5秒前
MrH完成签到,获得积分10
5秒前
5秒前
z掌握一下完成签到,获得积分10
5秒前
wulin314发布了新的文献求助20
6秒前
小蘑菇应助HAL9000采纳,获得10
6秒前
6秒前
hhm发布了新的文献求助10
6秒前
穆易羊完成签到 ,获得积分10
7秒前
在水一方应助Gnor采纳,获得10
7秒前
7秒前
8秒前
lqkcqmu发布了新的文献求助10
8秒前
z掌握一下发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650