Factors driving provider adoption of the TREWS machine learning-based early warning system and its effects on sepsis treatment timing

败血症 医学 预警得分 预警系统 急诊科 急诊医学 医疗急救 介绍(产科) 医疗保健 临床决策支持系统 重症监护医学 决策支持系统 计算机科学 内科学 护理部 人工智能 外科 电信 经济 经济增长
作者
Katharine E. Henry,Roy J. Adams,Cassandra Parent,Hossein Soleimani,Anirudh Sridharan,Lauren Johnson,David N. Hager,Sara E. Cosgrove,Andrew Markowski,Eili Klein,Edward S. Chen,Mustapha Saheed,Maureen Henley,Sheila Miranda,Katrina Houston,Robert C. Linton,Anushree R. Ahluwalia,Albert W. Wu,Suchi Saria
出处
期刊:Nature Medicine [Springer Nature]
卷期号:28 (7): 1447-1454 被引量:62
标识
DOI:10.1038/s41591-022-01895-z
摘要

Machine learning-based clinical decision support tools for sepsis create opportunities to identify at-risk patients and initiate treatments at early time points, which is critical for improving sepsis outcomes. In view of the increasing use of such systems, better understanding of how they are adopted and used by healthcare providers is needed. Here, we analyzed provider interactions with a sepsis early detection tool (Targeted Real-time Early Warning System), which was deployed at five hospitals over a 2-year period. Among 9,805 retrospectively identified sepsis cases, the early detection tool achieved high sensitivity (82% of sepsis cases were identified) and a high rate of adoption: 89% of all alerts by the system were evaluated by a physician or advanced practice provider and 38% of evaluated alerts were confirmed by a provider. Adjusting for patient presentation and severity, patients with sepsis whose alert was confirmed by a provider within 3 h had a 1.85-h (95% CI 1.66–2.00) reduction in median time to first antibiotic order compared to patients with sepsis whose alert was either dismissed, confirmed more than 3 h after the alert or never addressed in the system. Finally, we found that emergency department providers and providers who had previous interactions with an alert were more likely to interact with alerts, as well as to confirm alerts on retrospectively identified patients with sepsis. Beyond efforts to improve the performance of early warning systems, efforts to improve adoption are essential to their clinical impact and should focus on understanding providers' knowledge of, experience with and attitudes toward such systems. Prospective evaluation of a machine learning-based early warning system for sepsis, deployed at five hospitals, showed that healthcare providers interacted with the system at a high rate and that this interaction was associated with faster antibiotic ordering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迟大猫应助于某人采纳,获得10
刚刚
qingkong发布了新的文献求助10
1秒前
1秒前
1秒前
细腻白柏完成签到,获得积分10
1秒前
1秒前
麦满分完成签到,获得积分10
2秒前
长度2到发布了新的文献求助10
2秒前
Alicia完成签到,获得积分10
3秒前
西瓜大虫完成签到,获得积分10
3秒前
害羞聋五发布了新的文献求助10
4秒前
prosperp完成签到,获得积分0
4秒前
Hongsong完成签到,获得积分20
4秒前
prosperp应助背侧丘脑采纳,获得10
5秒前
好好发布了新的文献求助10
5秒前
gaos发布了新的文献求助10
5秒前
einuo发布了新的文献求助10
6秒前
001完成签到,获得积分20
6秒前
李健应助阔达萧采纳,获得10
6秒前
陆离发布了新的文献求助10
6秒前
7秒前
66应助雪白红紫采纳,获得10
7秒前
英俊的铭应助东郭南松采纳,获得10
7秒前
YANG完成签到 ,获得积分10
8秒前
冷酷哈密瓜完成签到,获得积分10
9秒前
岁月流年完成签到,获得积分10
9秒前
9秒前
10秒前
8个老登发布了新的文献求助10
11秒前
douzi完成签到,获得积分10
11秒前
Li完成签到,获得积分10
11秒前
Macaco完成签到,获得积分10
12秒前
研友_8Yo3dn完成签到,获得积分10
12秒前
lilac完成签到,获得积分10
12秒前
misalia发布了新的文献求助10
12秒前
judy发布了新的文献求助10
12秒前
13秒前
李健的小迷弟应助称心铭采纳,获得30
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678