Predicting political violence using a state-space model

可解释性 计算机科学 状态空间 分布(数学) 国家(计算机科学) 工作(物理) 空格(标点符号) 计量经济学 机器学习 统计 数学 算法 操作系统 机械工程 数学分析 工程类
作者
Andreas Lindholm,Johannes Hendriks,Adrian Wills,Thomas B. Schön
出处
期刊:International Interactions [Informa]
卷期号:48 (4): 759-777 被引量:3
标识
DOI:10.1080/03050629.2022.2094921
摘要

We provide a proof-of-concept for a novel state-space modelling approach for predicting monthly deaths due to political violence. Attention is focused on developing the method and demonstrating the utility of this approach, which provides exciting opportunities to engage with domain experts in developing new and improved state-space models for predicting violence. The prediction is made on a grid of cells with spatial resolution of 0.5 × 0.5 degrees, and each cell is modeled to have two mathematically well-defined unobserved/latent/hidden states that evolves over time and encode the “onset risk” and “potential severity”, respectively. This offers a certain level of interpretability of the model. By using the model for computing the probability distribution for a death count at a future time conditioned on all data observed up until the current time, a predictive distribution is obtained. The predictive distribution typically places a certain mass at the death count 0 (no violent outbreak) and the remaining mass indicating a likely interval of the fatality count, should a violent outbreak appear. To evaluate the model performance we—lacking a better alternative—report the mean of the predictive distribution, but the access to the predictive distribution is in itself an interesting contribution to the application. This work merely serves as a proof-of-concept for the state-space modeling approach for this type of data and several possible directions for further work that could improve the predictive performance are suggested.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sean完成签到,获得积分10
刚刚
打打应助黄豆酱采纳,获得10
刚刚
内向的绿发布了新的文献求助10
1秒前
1秒前
1秒前
小蘑菇应助燕天与采纳,获得10
1秒前
无情的保温杯完成签到,获得积分10
2秒前
SamYang发布了新的文献求助10
2秒前
啊啊啊啊完成签到,获得积分10
2秒前
lll发布了新的文献求助10
2秒前
3秒前
deepsuck发布了新的文献求助10
3秒前
5秒前
wasb131关注了科研通微信公众号
5秒前
5秒前
米亚完成签到 ,获得积分10
5秒前
传奇3应助是莉莉娅采纳,获得10
5秒前
啊啊啊啊发布了新的文献求助30
6秒前
7秒前
zxy发布了新的文献求助10
7秒前
友好谷蓝发布了新的文献求助10
7秒前
wxy发布了新的文献求助10
7秒前
李爱国应助小西采纳,获得10
9秒前
慕青应助HM采纳,获得10
9秒前
9秒前
wggggggy关注了科研通微信公众号
9秒前
小杭杭弟完成签到,获得积分10
9秒前
传奇3应助潮汐采纳,获得10
10秒前
10秒前
10秒前
sunshine发布了新的文献求助10
10秒前
10秒前
dddd完成签到,获得积分10
11秒前
11秒前
何必在乎发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
酷炫翠柏发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711378
求助须知:如何正确求助?哪些是违规求助? 5203436
关于积分的说明 15264067
捐赠科研通 4863675
什么是DOI,文献DOI怎么找? 2610868
邀请新用户注册赠送积分活动 1561184
关于科研通互助平台的介绍 1518621