Automatic Seizure Identification from EEG Signals Based on Brain Connectivity Learning

脑电图 图形 鉴定(生物学) 计算机科学 癫痫 人工智能 模式识别(心理学) 人工神经网络 理论(学习稳定性) 神经科学 机器学习 心理学 植物 理论计算机科学 生物
作者
Yanna Zhao,Mingrui Xue,Changxu Dong,Jiatong He,Dengyu Chu,Gaobo Zhang,Fangzhou Xu,Xinting Ge,Yuanjie Zheng
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (11) 被引量:22
标识
DOI:10.1142/s0129065722500502
摘要

Epilepsy is a neurological disorder caused by brain dysfunction, which could cause uncontrolled behavior, loss of consciousness and other hazards. Electroencephalography (EEG) is an indispensable auxiliary tool for clinical diagnosis. Great progress has been made by current seizure identification methods. However, the performance of the methods on different patients varies a lot. In order to deal with this problem, we propose an automatic seizure identification method based on brain connectivity learning. The connectivity of different brain regions is modeled by a graph. Different from the manually defined graph structure, our method can extract the optimal graph structure and EEG features in an end-to-end manner. Combined with the popular graph attention neural network (GAT), this method achieves high performance and stability on different patients from the CHB-MIT dataset. The average values of accuracy, sensitivity, specificity, F1-score and AUC of the proposed model are 98.90%, 98.33%, 98.48%, 97.72% and 98.54%, respectively. The standard deviations of the above five indicators are 0.0049, 0.0125, 0.0116 and 0.0094, respectively. Compared with the existing seizure identification methods, the stability of the proposed model is improved by 78-95%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Dawn完成签到 ,获得积分10
2秒前
kongbai发布了新的文献求助10
3秒前
imzmy发布了新的文献求助10
3秒前
两袖清风完成签到,获得积分10
4秒前
丘比特应助VDC采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
顺利毕业完成签到 ,获得积分10
6秒前
7秒前
科研通AI5应助蒙蒙细雨采纳,获得10
9秒前
华仔应助sunnyxxq采纳,获得10
10秒前
10秒前
imzmy完成签到,获得积分10
12秒前
李爱国应助jummy采纳,获得10
14秒前
Freya完成签到 ,获得积分10
15秒前
16秒前
16秒前
wangxinji完成签到,获得积分10
16秒前
带虾的烧麦完成签到,获得积分10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得30
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
小明应助科研通管家采纳,获得20
19秒前
田様应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得30
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
笑点低小夏完成签到,获得积分10
20秒前
夕兮发布了新的文献求助20
22秒前
22秒前
小蜗牛完成签到 ,获得积分10
28秒前
jummy发布了新的文献求助10
28秒前
小二郎应助Maylling采纳,获得10
31秒前
32秒前
冰蓝完成签到 ,获得积分10
34秒前
34秒前
刘乐艺发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574269
求助须知:如何正确求助?哪些是违规求助? 3994309
关于积分的说明 12365141
捐赠科研通 3667553
什么是DOI,文献DOI怎么找? 2021284
邀请新用户注册赠送积分活动 1055423
科研通“疑难数据库(出版商)”最低求助积分说明 942833